文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于双重随机游走和空间投影联邦方法的新型 miRNA-疾病关联预测模型。

A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.

机构信息

Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China.

Hainan Key Laboratory for Computational Science and Application, Haikou, China.

出版信息

PLoS One. 2021 Jun 17;16(6):e0252971. doi: 10.1371/journal.pone.0252971. eCollection 2021.


DOI:10.1371/journal.pone.0252971
PMID:34138933
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8211179/
Abstract

A large number of studies have shown that the variation and disorder of miRNAs are important causes of diseases. The recognition of disease-related miRNAs has become an important topic in the field of biological research. However, the identification of disease-related miRNAs by biological experiments is expensive and time consuming. Thus, computational prediction models that predict disease-related miRNAs must be developed. A novel network projection-based dual random walk with restart (NPRWR) was used to predict potential disease-related miRNAs. The NPRWR model aims to estimate and accurately predict miRNA-disease associations by using dual random walk with restart and network projection technology, respectively. The leave-one-out cross validation (LOOCV) was adopted to evaluate the prediction performance of NPRWR. The results show that the area under the receiver operating characteristic curve(AUC) of NPRWR was 0.9029, which is superior to that of other advanced miRNA-disease associated prediction methods. In addition, lung and kidney neoplasms were selected to present a case study. Among the first 50 miRNAs predicted, 50 and 49 miRNAs have been proven by in databases or relevant literature. Moreover, NPRWR can be used to predict isolated diseases and new miRNAs. LOOCV and the case study achieved good prediction results. Thus, NPRWR will become an effective and accurate disease-miRNA association prediction model.

摘要

大量研究表明,miRNAs 的变异和紊乱是疾病的重要原因。识别与疾病相关的 miRNAs 已成为生物研究领域的重要课题。然而,通过生物实验识别与疾病相关的 miRNAs 既昂贵又耗时。因此,必须开发预测疾病相关 miRNAs 的计算预测模型。本文提出了一种新的基于网络投影的双重随机游走带重启动(NPRWR)方法来预测潜在的疾病相关 miRNAs。NPRWR 模型旨在分别使用双重随机游走带重启动和网络投影技术来估计和准确预测 miRNA-疾病关联。采用留一法交叉验证(LOOCV)评估 NPRWR 的预测性能。结果表明,NPRWR 的受试者工作特征曲线下面积(AUC)为 0.9029,优于其他先进的 miRNA-疾病关联预测方法。此外,选择肺和肾肿瘤进行案例研究。在预测的前 50 个 miRNAs 中,有 50 个和 49 个 miRNAs 已经在数据库或相关文献中得到了证实。此外,NPRWR 可以用于预测孤立性疾病和新的 miRNAs。LOOCV 和案例研究取得了良好的预测结果。因此,NPRWR 将成为一种有效的、准确的疾病-miRNA 关联预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/f4624f3a0929/pone.0252971.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/a4dbbc19cd32/pone.0252971.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/318552cab985/pone.0252971.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/1454b554d265/pone.0252971.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/f4624f3a0929/pone.0252971.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/a4dbbc19cd32/pone.0252971.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/318552cab985/pone.0252971.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/1454b554d265/pone.0252971.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c64/8211179/f4624f3a0929/pone.0252971.g004.jpg

相似文献

[1]
A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.

PLoS One. 2021

[2]
Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction.

BMC Bioinformatics. 2022-7-25

[3]
Prediction of MicroRNA-Disease Potential Association Based on Sparse Learning and Multilayer Random Walks.

J Comput Biol. 2024-3

[4]
An improved random forest-based computational model for predicting novel miRNA-disease associations.

BMC Bioinformatics. 2019-12-3

[5]
MDHGI: Matrix Decomposition and Heterogeneous Graph Inference for miRNA-disease association prediction.

PLoS Comput Biol. 2018-8-24

[6]
MCMDA: Matrix completion for MiRNA-disease association prediction.

Oncotarget. 2017-3-28

[7]
Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities.

Sci Rep. 2021-10-26

[8]
WBNPMD: weighted bipartite network projection for microRNA-disease association prediction.

J Transl Med. 2019-9-23

[9]
NDAMDA: Network distance analysis for MiRNA-disease association prediction.

J Cell Mol Med. 2018-3-13

[10]
Improved Prediction of miRNA-Disease Associations Based on Matrix Completion with Network Regularization.

Cells. 2020-4-3

引用本文的文献

[1]
SPLHRNMTF: robust orthogonal non-negative matrix tri-factorization with self-paced learning and dual hypergraph regularization for predicting miRNA-disease associations.

BMC Genomics. 2024-9-20

[2]
SCPLPA: An miRNA-disease association prediction model based on spatial consistency projection and label propagation algorithm.

J Cell Mol Med. 2024-5

[3]
Complementary feature learning across multiple heterogeneous networks and multimodal attribute learning for predicting disease-related miRNAs.

iScience. 2023-12-5

[4]
DEJKMDR: miRNA-disease association prediction method based on graph convolutional network.

Front Med (Lausanne). 2023-9-12

[5]
KATZNCP: a miRNA-disease association prediction model integrating KATZ algorithm and network consistency projection.

BMC Bioinformatics. 2023-6-2

[6]
Predicting miRNA-disease association through combining miRNA function and network topological similarities based on MINE.

iScience. 2022-10-7

[7]
Predicting miRNA-disease associations using improved random walk with restart and integrating multiple similarities.

Sci Rep. 2021-10-26

本文引用的文献

[1]
A novel information diffusion method based on network consistency for identifying disease related microRNAs.

RSC Adv. 2018-10-30

[2]
LSGSP: a novel miRNA-disease association prediction model using a Laplacian score of the graphs and space projection federated method.

RSC Adv. 2019-9-20

[3]
Prediction of miRNA-Disease Association Using Deep Collaborative Filtering.

Biomed Res Int. 2021

[4]
MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2.

Noncoding RNA. 2021-2-18

[5]
RWSF-BLP: a novel lncRNA-disease association prediction model using random walk-based multi-similarity fusion and bidirectional label propagation.

Mol Genet Genomics. 2021-5

[6]
Predicting MiRNA-disease associations by multiple meta-paths fusion graph embedding model.

BMC Bioinformatics. 2020-10-21

[7]
Variational graph auto-encoders for miRNA-disease association prediction.

Methods. 2021-8

[8]
Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations.

Brief Bioinform. 2021-5-20

[9]
MSFSP: A Novel miRNA-Disease Association Prediction Model by Federating Multiple-Similarities Fusion and Space Projection.

Front Genet. 2020-4-30

[10]
MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association.

Front Genet. 2020-4-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索