Suppr超能文献

基于双层随机游走的全局相似性方法预测 microRNA-疾病关联。

Global Similarity Method Based on a Two-tier Random Walk for the Prediction of microRNA-Disease Association.

机构信息

College of Information Science and Engineering, Hunan University, Changsha, 410082, China.

College of Computer Science and Technology, Hunan Institute of Technology, 421002, Hengyang, China.

出版信息

Sci Rep. 2018 Apr 24;8(1):6481. doi: 10.1038/s41598-018-24532-7.

Abstract

microRNAs (miRNAs) mutation and maladjustment are related to the occurrence and development of human diseases. Studies on disease-associated miRNA have contributed to disease diagnosis and treatment. To address the problems, such as low prediction accuracy and failure to predict the relationship between new miRNAs and diseases and so on, we design a Laplacian score of graphs to calculate the global similarity of networks and propose a Global Similarity method based on a Two-tier Random Walk for the prediction of miRNA-disease association (GSTRW) to reveal the correlation between miRNAs and diseases. This method is a global approach that can simultaneously predict the correlation between all diseases and miRNAs in the absence of negative samples. Experimental results reveal that this method is better than existing approaches in terms of overall prediction accuracy and ability to predict orphan diseases and novel miRNAs. A case study on GSTRW for breast cancer and conlon cancer is also conducted, and the majority of miRNA-disease association can be verified by our experiment. This study indicates that this method is feasible and effective.

摘要

微小 RNA(miRNAs)突变和失调与人类疾病的发生和发展有关。对疾病相关 miRNA 的研究有助于疾病的诊断和治疗。为了解决预测精度低、无法预测新 miRNA 与疾病之间的关系等问题,我们设计了图的拉普拉斯得分来计算网络的全局相似性,并提出了一种基于两层随机游走的全局相似性方法(GSTRW)来预测 miRNA-疾病关联,以揭示 miRNA 和疾病之间的相关性。该方法是一种全局方法,可以在没有负样本的情况下同时预测所有疾病和 miRNA 之间的相关性。实验结果表明,该方法在整体预测准确性和预测孤儿疾病和新 miRNA 的能力方面优于现有方法。我们还对 GSTRW 进行了乳腺癌和结肠癌的案例研究,实验验证了大部分 miRNA-疾病的关联。本研究表明该方法是可行且有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5e7/5915491/95567ccfee95/41598_2018_24532_Fig1_HTML.jpg

相似文献

2
An improved random forest-based computational model for predicting novel miRNA-disease associations.
BMC Bioinformatics. 2019 Dec 3;20(1):624. doi: 10.1186/s12859-019-3290-7.
3
Maximal entropy random walk on heterogenous network for MIRNA-disease Association prediction.
Math Biosci. 2018 Dec;306:1-9. doi: 10.1016/j.mbs.2018.10.004. Epub 2018 Oct 16.
4
Integrating random walk and binary regression to identify novel miRNA-disease association.
BMC Bioinformatics. 2019 Jan 28;20(1):59. doi: 10.1186/s12859-019-2640-9.
6
Collective Prediction of Disease-Associated miRNAs Based on Transduction Learning.
IEEE/ACM Trans Comput Biol Bioinform. 2017 Nov-Dec;14(6):1468-1475. doi: 10.1109/TCBB.2016.2599866. Epub 2016 Aug 12.
8
A Novel Neighborhood-Based Computational Model for Potential MiRNA-Disease Association Prediction.
Comput Math Methods Med. 2019 Jan 17;2019:5145646. doi: 10.1155/2019/5145646. eCollection 2019.
9
MRWMDA: A novel framework to infer miRNA-disease associations.
Biosystems. 2021 Jan;199:104292. doi: 10.1016/j.biosystems.2020.104292. Epub 2020 Nov 19.

引用本文的文献

5
BMPMDA: Prediction of MiRNA-Disease Associations Using a Space Projection Model Based on Block Matrix.
Interdiscip Sci. 2023 Mar;15(1):88-99. doi: 10.1007/s12539-022-00542-y. Epub 2022 Nov 6.
6
Pan-Cancer Analysis of BUB1B/hsa-miR-130a-3p Axis and Identification of Circulating hsa-miR-130a-3p as a Potential Biomarker for Cancer Risk Assessment.
Evid Based Complement Alternat Med. 2022 Sep 22;2022:3261300. doi: 10.1155/2022/3261300. eCollection 2022.
7
Identification of MiRNA-Disease Associations Based on Information of Multi-Module and Meta-Path.
Molecules. 2022 Jul 11;27(14):4443. doi: 10.3390/molecules27144443.
9
10
A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method.
PLoS One. 2021 Jun 17;16(6):e0252971. doi: 10.1371/journal.pone.0252971. eCollection 2021.

本文引用的文献

1
GRMDA: Graph Regression for MiRNA-Disease Association Prediction.
Front Physiol. 2018 Feb 20;9:92. doi: 10.3389/fphys.2018.00092. eCollection 2018.
2
EGBMMDA: Extreme Gradient Boosting Machine for MiRNA-Disease Association prediction.
Cell Death Dis. 2018 Jan 5;9(1):3. doi: 10.1038/s41419-017-0003-x.
3
GIMDA: Graphlet interaction-based MiRNA-disease association prediction.
J Cell Mol Med. 2018 Mar;22(3):1548-1561. doi: 10.1111/jcmm.13429. Epub 2017 Dec 22.
4
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.
PLoS Comput Biol. 2017 Dec 18;13(12):e1005912. doi: 10.1371/journal.pcbi.1005912. eCollection 2017 Dec.
6
HAMDA: Hybrid Approach for MiRNA-Disease Association prediction.
J Biomed Inform. 2017 Dec;76:50-58. doi: 10.1016/j.jbi.2017.10.014. Epub 2017 Oct 31.
8
MicroRNAs and complex diseases: from experimental results to computational models.
Brief Bioinform. 2019 Mar 22;20(2):515-539. doi: 10.1093/bib/bbx130.
9
DRMDA: deep representations-based miRNA-disease association prediction.
J Cell Mol Med. 2018 Jan;22(1):472-485. doi: 10.1111/jcmm.13336. Epub 2017 Aug 31.
10
Improved low-rank matrix recovery method for predicting miRNA-disease association.
Sci Rep. 2017 Jul 20;7(1):6007. doi: 10.1038/s41598-017-06201-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验