Suppr超能文献

通过高度均匀和光滑的金纳米球的“2D”AFM 纳米操作来组装“3D”等离子体簇。

Assembly of "3D" plasmonic clusters by "2D" AFM nanomanipulation of highly uniform and smooth gold nanospheres.

机构信息

SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.

出版信息

Sci Rep. 2017 Jul 20;7(1):6045. doi: 10.1038/s41598-017-06456-w.

Abstract

Atomic force microscopy (AFM) nanomanipulation has been viewed as a deterministic method for the assembly of plasmonic metamolecules because it enables unprecedented engineering of clusters with exquisite control over particle number and geometry. Nevertheless, the dimensionality of plasmonic metamolecules via AFM nanomanipulation is limited to 2D, so as to restrict the design space of available artificial electromagnetisms. Here, we show that "2D" nanomanipulation of the AFM tip can be used to assemble "3D" plasmonic metamolecules in a versatile and deterministic way by dribbling highly spherical and smooth gold nanospheres (NSs) on a nanohole template rather than on a flat surface. Various 3D plasmonic clusters with controlled symmetry were successfully assembled with nanometer precision; the relevant 3D plasmonic modes (i.e., artificial magnetism and magnetic-based Fano resonance) were fully rationalized by both numerical calculation and dark-field spectroscopy. This templating strategy for advancing AFM nanomanipulation can be generalized to exploit the fundamental understanding of various electromagnetic 3D couplings and can serve as the basis for the design of metamolecules, metafluids, and metamaterials.

摘要

原子力显微镜 (AFM) 纳米操纵被视为组装等离子体超材料的一种确定性方法,因为它能够以前所未有的方式对具有精细控制粒子数量和几何形状的簇进行工程设计。然而,通过 AFM 纳米操纵的等离子体超材料的维度仅限于 2D,从而限制了可用人工电磁学的设计空间。在这里,我们表明通过在纳米孔模板上而不是在平面上滴涂高度球形和光滑的金纳米球 (NS),AFM 尖端的“2D”纳米操纵可以以通用且确定的方式组装“3D”等离子体超材料。成功地以纳米级精度组装了具有受控对称性的各种 3D 等离子体簇;通过数值计算和暗场光谱学,充分合理化了相关的 3D 等离子体模式(即人工磁性和基于磁性的 Fano 共振)。这种用于推进 AFM 纳米操纵的模板策略可以推广到对各种电磁 3D 耦合的基本理解,并可以作为超材料、元流体和超材料设计的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验