Cai Yingying, Sarkar Swagato, Peng Yuwen, König Tobias A F, Vana Philipp
Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstrasse 6, 37077 Göttingen, Germany.
Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.
ACS Nano. 2024 Nov 12;18(45):31360-31371. doi: 10.1021/acsnano.4c10912. Epub 2024 Oct 31.
Plasmonic molecules (PMs) composed of polymer-capped nanoparticles represent an emerging material class with precise optical functionalities. However, achieving controlled structural changes in metallic nanoparticle aggregation at the nanoscale, similar to the modification of atomic structures, remains challenging. This study demonstrates the 2D/3D isomerization of such plasmonic molecules induced by a controlled ultrasound process. We used two types of gold nanoparticles, each functionalized with hydrogen bonding (HB) donor or acceptor polymers, to self-assemble into different AB-type complexes via interparticle polymer bundles acting as molecular bonds. Post-ultrasonication treatment significantly shortens these bonds from approximately 14 to 2 nm by enhancing HB cross-linking within the bundles. This drastic change in the bond length increases the stiffness of the resulting clusters, facilitating the transition from 2D to 3D configurations in 100% yield during drop-casting onto substrates. Our results advance the precise control of PMs' nanoarchitectures and provide insights for their broad applications in sensing, optoelectronics, and metamaterials.
由聚合物包覆的纳米颗粒组成的等离激元分子(PMs)是一类新兴的具有精确光学功能的材料。然而,在纳米尺度上实现金属纳米颗粒聚集结构的可控变化,类似于原子结构的修饰,仍然具有挑战性。本研究展示了通过可控超声过程诱导此类等离激元分子的二维/三维异构化。我们使用了两种类型的金纳米颗粒,每种都用氢键(HB)供体或受体聚合物进行功能化,通过充当分子键的颗粒间聚合物束自组装成不同的AB型复合物。超声处理后,通过增强束内的HB交联,这些键从大约14纳米显著缩短至2纳米。键长的这种剧烈变化增加了所得簇的刚度,在滴铸到基板上时以100%的产率促进了从二维到三维构型的转变。我们的结果推动了对等离激元分子纳米结构的精确控制,并为其在传感、光电子学和超材料中的广泛应用提供了见解。