Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
Chem Soc Rev. 2017 Oct 2;46(19):5925-5934. doi: 10.1039/c7cs00230k.
The use of strong magnetic field gradients and high magnetic fields generated by permanent magnets or superconducting coils has found applications in many fields such as mining, solid state chemistry, biochemistry and medical research. Lab scale or industrial implementations involve separation of macro- and nanoparticles, cells, proteins, and macromolecules down to small molecules and ions. Most promising are those attempts where the object to be separated is attached to a strong magnetic nanoparticle. Here, all kinds of specific affinity interactions are used to attach magnetic carrier particles to mainly objects of biological interest. Other attempts use a strong paramagnetic suspension for the separation of purely diamagnetic objects, such as bio-macromolecules or heavy metals. The application of magnetic separation to superconducting inorganic phases is of particular interest in combination with ceramic combinatorial chemistry to generate a library of e.g. cuprate superconductors.
强磁场梯度和由永磁体或超导线圈产生的高磁场的应用已经在采矿、固态化学、生物化学和医学研究等许多领域得到了应用。实验室规模或工业应用涉及到宏观和纳米颗粒、细胞、蛋白质和生物大分子到小分子和离子的分离。最有前途的是那些试图将待分离的物体附着在强磁性纳米颗粒上的尝试。在这里,各种特定的亲和相互作用被用来将磁性载体颗粒附着到主要的生物感兴趣的物体上。其他尝试使用强顺磁悬浮液来分离纯抗磁性物体,如生物大分子或重金属。将磁分离应用于超导无机相与陶瓷组合化学相结合,对于生成例如铜酸盐超导体的库特别有意义。
Adv Biochem Eng Biotechnol. 2014
Nanotechnology. 2012-2-1
J Chromatogr A. 2011-5-6
Phys Rev E Stat Nonlin Soft Matter Phys. 2014-3
J Colloid Interface Sci. 2016-4-15
Acc Chem Res. 2017-5-8
Biotechnol Bioeng. 2025-6-26
Methods Mol Biol. 2023
Nanoscale Adv. 2022-1-17