Suppr超能文献

RNA纳米结构的分子动力学模拟方案

Protocols for Molecular Dynamics Simulations of RNA Nanostructures.

作者信息

Kim Taejin, Kasprzak Wojciech K, Shapiro Bruce A

机构信息

Department of Chemistry, New York University, 10th Floor Silver Center, 100 Washington Square East, New York, NY, 10003, USA.

Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.

出版信息

Methods Mol Biol. 2017;1632:33-64. doi: 10.1007/978-1-4939-7138-1_3.

Abstract

Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.

摘要

分子动力学(MD)模拟已成为研究广泛生物系统的主要研究工具之一,并弥合了X射线晶体学或核磁共振结构与生物学机制之间的差距。在RNA纳米结构领域,MD模拟已用于修复计算设计的RNA纳米结构中的空间冲突、表征动力学,并研究RNA与其他生物分子(如递送剂和膜)之间的相互作用。在本章中,我们展示了使用Amber分子动力学软件包在显式和隐式溶剂中进行分子动力学模拟的计算协议示例。我们还展示了模拟后分析步骤的示例,并简要提及了Amber软件包之外的选定工具。还讨论了方法、工具和协议的局限性。大多数示例是针对小RNA双链体(螺旋)进行说明的,但这些协议适用于任何核酸结构,仅受用户可用硬件的计算速度和内存限制。

相似文献

1
Protocols for Molecular Dynamics Simulations of RNA Nanostructures.
Methods Mol Biol. 2017;1632:33-64. doi: 10.1007/978-1-4939-7138-1_3.
3
Accuracy of MD solvent models in RNA structure refinement assessed via liquid-crystal NMR and spin relaxation data.
J Struct Biol. 2019 Sep 1;207(3):250-259. doi: 10.1016/j.jsb.2019.07.001. Epub 2019 Jul 3.
4
Implicit Solvent Model for Million-Atom Atomistic Simulations: Insights into the Organization of 30-nm Chromatin Fiber.
J Chem Theory Comput. 2016 Dec 13;12(12):5946-5959. doi: 10.1021/acs.jctc.6b00712. Epub 2016 Nov 7.
5
Implicit Solvent with Explicit Ions Generalized Born Model in Molecular Dynamics: Application to DNA.
J Chem Theory Comput. 2024 Oct 8;20(19):8724-8739. doi: 10.1021/acs.jctc.4c00833. Epub 2024 Sep 16.
6
Improvements of the hierarchical approach for predicting RNA tertiary structure.
J Biomol Struct Dyn. 2011 Apr;28(5):815-26. doi: 10.1080/07391102.2011.10508609.
7
Explicit ions/implicit water generalized Born model for nucleic acids.
J Chem Phys. 2018 May 21;148(19):195101. doi: 10.1063/1.5027260.
8
How to understand atomistic molecular dynamics simulations of RNA and protein-RNA complexes?
Wiley Interdiscip Rev RNA. 2017 May;8(3). doi: 10.1002/wrna.1405. Epub 2016 Nov 10.
9
A novel implicit solvent model for simulating the molecular dynamics of RNA.
Biophys J. 2013 Sep 3;105(5):1248-57. doi: 10.1016/j.bpj.2013.07.033.
10
Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.
Food Chem Toxicol. 2018 Feb;112:495-506. doi: 10.1016/j.fct.2017.08.028. Epub 2017 Aug 24.

引用本文的文献

本文引用的文献

1
Insertion of oxidized nucleotide triggers rapid DNA polymerase opening.
Nucleic Acids Res. 2016 May 19;44(9):4409-24. doi: 10.1093/nar/gkw174. Epub 2016 Mar 31.
2
Refinement of Generalized Born Implicit Solvation Parameters for Nucleic Acids and Their Complexes with Proteins.
J Chem Theory Comput. 2015 Aug 11;11(8):3714-28. doi: 10.1021/acs.jctc.5b00271.
3
Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation.
J Chem Theory Comput. 2015 Aug 11;11(8):3584-3595. doi: 10.1021/acs.jctc.5b00436. Epub 2015 Jul 14.
4
Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications.
J Control Release. 2015 Sep 10;213:142-151. doi: 10.1016/j.jconrel.2015.06.041. Epub 2015 Jul 4.
5
Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide.
Nature. 2015 Jan 29;517(7536):635-9. doi: 10.1038/nature13886. Epub 2014 Nov 17.
6
Multifunctional RNA nanoparticles.
Nano Lett. 2014 Oct 8;14(10):5662-71. doi: 10.1021/nl502385k. Epub 2014 Sep 30.
7
Elastic network models capture the motions apparent within ensembles of RNA structures.
RNA. 2014 Jun;20(6):792-804. doi: 10.1261/rna.041269.113. Epub 2014 Apr 23.
8
In silico design and enzymatic synthesis of functional RNA nanoparticles.
Acc Chem Res. 2014 Jun 17;47(6):1731-41. doi: 10.1021/ar400329z. Epub 2014 Apr 23.
9
Computational and experimental characterization of RNA cubic nanoscaffolds.
Methods. 2014 May 15;67(2):256-65. doi: 10.1016/j.ymeth.2013.10.013. Epub 2013 Nov 1.
10
A novel implicit solvent model for simulating the molecular dynamics of RNA.
Biophys J. 2013 Sep 3;105(5):1248-57. doi: 10.1016/j.bpj.2013.07.033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验