Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA Bioinformatics and Computational Biology Interdepartmental Graduate Program, Iowa State University, Ames, Iowa 50011, USA.
RNA. 2014 Jun;20(6):792-804. doi: 10.1261/rna.041269.113. Epub 2014 Apr 23.
The role of structure and dynamics in mechanisms for RNA becomes increasingly important. Computational approaches using simple dynamics models have been successful at predicting the motions of proteins and are often applied to ribonucleo-protein complexes but have not been thoroughly tested for well-packed nucleic acid structures. In order to characterize a true set of motions, we investigate the apparent motions from 16 ensembles of experimentally determined RNA structures. These indicate a relatively limited set of motions that are captured by a small set of principal components (PCs). These limited motions closely resemble the motions computed from low frequency normal modes from elastic network models (ENMs), either at atomic or coarse-grained resolution. Various ENM model types, parameters, and structure representations are tested here against the experimental RNA structural ensembles, exposing differences between models for proteins and for folded RNAs. Differences in performance are seen, depending on the structure alignment algorithm used to generate PCs, modulating the apparent utility of ENMs but not significantly impacting their ability to generate functional motions. The loss of dynamical information upon coarse-graining is somewhat larger for RNAs than for globular proteins, indicating, perhaps, the lower cooperativity of the less densely packed RNA. However, the RNA structures show less sensitivity to the elastic network model parameters than do proteins. These findings further demonstrate the utility of ENMs and the appropriateness of their application to well-packed RNA-only structures, justifying their use for studying the dynamics of ribonucleo-proteins, such as the ribosome and regulatory RNAs.
结构和动力学在 RNA 机制中的作用变得越来越重要。使用简单动力学模型的计算方法在预测蛋白质的运动方面取得了成功,并且经常应用于核糖核蛋白复合物,但尚未经过充分测试,以适用于紧密包装的核酸结构。为了描述真实的运动集合,我们研究了 16 个实验确定的 RNA 结构集合的表观运动。这些运动表明存在一组相对有限的运动,这些运动由一小部分主要成分 (PC) 捕获。这些有限的运动与从弹性网络模型 (ENM) 的低频正常模式计算出的运动非常相似,无论是在原子分辨率还是粗粒度分辨率下。这里针对实验 RNA 结构集合测试了各种 ENM 模型类型、参数和结构表示形式,揭示了蛋白质和折叠 RNA 的模型之间的差异。根据用于生成 PC 的结构对齐算法的不同,性能存在差异,这会调节 ENM 的表观效用,但不会显著影响其生成功能运动的能力。与球状蛋白质相比,RNA 的粗粒化过程中动力学信息的损失稍大,这表明 RNA 的堆积密度较低,协同性较低。然而,与蛋白质相比,RNA 结构对弹性网络模型参数的敏感性较低。这些发现进一步证明了 ENM 的实用性及其适用于紧密包装的仅 RNA 结构的应用,为研究核糖核蛋白(如核糖体和调节 RNA)的动力学提供了依据。