Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.
Nanoscale. 2019 Jan 3;11(2):631-638. doi: 10.1039/c8nr08638a.
Novel yolk-shell-structured microspheres consisting of N-doped-carbon-coated metal-oxide hollow nanospheres are designed as efficient anode materials for lithium-ion batteries and synthesized via a spray pyrolysis process. A NiMoO4 yolk-shell architecture formed via spray pyrolysis is transformed into equally structured NiSe2-MoSe2 composite microspheres. Because of the complementary effect between the Ni and Mo components that prevents severe crystal growth during selenization, NiSe2-MoSe2 nanocrystals are uniformly distributed over the yolk-shell structure. Then, the yolk-shell-structured NiSe2-MoSe2 microspheres are oxidized, which yields microspheres composed of NiMoO4 hollow nanospheres by nanoscale Kirkendall diffusion. Uniform coating with polydopamine and a subsequent carbonization process produce uniquely structured microspheres consisting of N-doped-carbon-coated NiMoO4 hollow nanospheres. The discharge capacity of the yolk-shell-structured NiMoO4-C composite microspheres for the 500th cycle at a current density of 3.0 A g-1 is 862 mA h g-1. In addition, the NiMoO4-C composite microspheres show a high reversible capacity of 757 mA h g-1 even at an extremely high current density of 10 A g-1. The synergetic effect between the hollow nanospheres comprising the yolk-shell structure and the N-doped carbon coating layer results in the excellent lithium-ion storage performance of the NiMoO4-C composite microspheres.
新型蛋黄壳结构的微球由氮掺杂碳包覆的金属氧化物空心纳米球组成,被设计为用于锂离子电池的高效阳极材料,并通过喷雾热解工艺合成。通过喷雾热解形成的 NiMoO4 蛋黄壳结构被转化为具有相同结构的 NiSe2-MoSe2 复合微球。由于 Ni 和 Mo 成分之间的协同效应,在硒化过程中阻止了严重的晶体生长,NiSe2-MoSe2 纳米晶均匀分布在蛋黄壳结构中。然后,对蛋黄壳结构的 NiSe2-MoSe2 微球进行氧化,通过纳米级 Kirkendall 扩散产生由 NiMoO4 空心纳米球组成的微球。均匀包覆聚多巴胺并进行碳化处理,产生由氮掺杂碳包覆的 NiMoO4 空心纳米球组成的独特结构微球。在 3.0 A g-1 的电流密度下,蛋黄壳结构的 NiMoO4-C 复合微球在第 500 次循环时的放电容量为 862 mA h g-1。此外,即使在极高的电流密度 10 A g-1 下,NiMoO4-C 复合微球也表现出高达 757 mA h g-1 的可逆容量。蛋黄壳结构空心纳米球和氮掺杂碳涂层之间的协同效应导致了 NiMoO4-C 复合微球优异的锂离子存储性能。