Suppr超能文献

通过增强结构域内和结构域间疏水相互作用提高海洋微生物酯酶嗜盐性的结构与机制研究

Structural and Mechanistic Insights into the Improvement of the Halotolerance of a Marine Microbial Esterase by Increasing Intra- and Interdomain Hydrophobic Interactions.

作者信息

Li Ping-Yi, Zhang Yi, Xie Bin-Bin, Zhang Yan-Qi, Hao Jie, Wang Yue, Wang Peng, Li Chun-Yang, Qin Qi-Long, Zhang Xi-Ying, Su Hai-Nan, Shi Mei, Zhang Yu-Zhong, Chen Xiu-Lan

机构信息

Institute of Marine Science and Technology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China.

Institute of Marine Science and Technology, State Key Laboratory of Microbial Technology, Shandong University, Jinan, China

出版信息

Appl Environ Microbiol. 2017 Aug 31;83(18). doi: 10.1128/AEM.01286-17. Print 2017 Sep 15.

Abstract

Halotolerant enzymes are beneficial for industrial processes requiring high salt concentrations and low water activity. Most halophilic proteins are evolved to have reduced hydrophobic interactions on the surface and in the hydrophobic cores for their haloadaptation. However, in this study, we improved the halotolerance of a thermolabile esterase, E40, by increasing intraprotein hydrophobic interactions. E40 was quite unstable in buffers containing more than 0.3 M NaCl, and its and substrate affinity were both significantly reduced in 0.5 M NaCl. By introducing hydrophobic residues in loop 1 of the CAP domain and/or α7 of the catalytic domain in E40, we obtained several mutants with improved halotolerance, and the M3 S202W I203F mutant was the most halotolerant. ("M3" represents a mutation in loop 1 of the CAP domain in which residues R22-K23-T24 of E40 are replaced by residues Y22-K23-H24-L25-S26 of Est2.) Then we solved the crystal structures of the S202W I203F and M3 S202W I203F mutants to reveal the structural basis for their improved halotolerance. Structural analysis revealed that the introduction of hydrophobic residues W202 and F203 in α7 significantly improved E40 halotolerance by strengthening intradomain hydrophobic interactions of F203 with W202 and other residues in the catalytic domain. By further introducing hydrophobic residues in loop 1, the M3 S202W I203F mutant became more rigid and halotolerant due to the formation of additional interdomain hydrophobic interactions between the introduced Y22 in loop 1 and W204 in α7. These results indicate that increasing intraprotein hydrophobic interactions is also a way to improve the halotolerance of enzymes with industrial potential under high-salt conditions. Esterases and lipases for industrial application are often subjected to harsh conditions such as high salt concentrations, low water activity, and the presence of organic solvents. However, reports on halotolerant esterases and lipases are limited, and the underlying mechanism for their halotolerance is still unclear due to the lack of structures. In this study, we focused on the improvement of the halotolerance of a salt-sensitive esterase, E40, and the underlying mechanism. The halotolerance of E40 was significantly improved by introducing hydrophobic residues. Comparative structural analysis of E40 and its halotolerant mutants revealed that increased intraprotein hydrophobic interactions make these mutants more rigid and more stable than the wild type against high concentrations of salts. This study shows a new way to improve enzyme halotolerance, which is helpful for protein engineering of salt-sensitive enzymes.

摘要

耐盐酶有利于需要高盐浓度和低水分活度的工业过程。大多数嗜盐蛋白在进化过程中,其表面和疏水核心中的疏水相互作用减少,以实现其对盐的适应性。然而,在本研究中,我们通过增加蛋白质内部的疏水相互作用,提高了一种热不稳定酯酶E40的耐盐性。E40在含有超过0.3M NaCl的缓冲液中非常不稳定,在0.5M NaCl中其活性和底物亲和力均显著降低。通过在E40的CAP结构域的环1和/或催化结构域的α7中引入疏水残基,我们获得了几个耐盐性提高的突变体,其中M3 S202W I203F突变体的耐盐性最强。(“M3”代表CAP结构域环1中的一个突变,其中E40的R22-K23-T24残基被Est2的Y22-K23-H24-L25-S26残基取代。)然后,我们解析了S202W I203F和M3 S202W I203F突变体的晶体结构,以揭示它们耐盐性提高的结构基础。结构分析表明,在α7中引入疏水残基W202和F203,通过加强F203与催化结构域中W202和其他残基的结构域内疏水相互作用,显著提高了E40的耐盐性。通过在环1中进一步引入疏水残基,M3 S202W I203F突变体由于环1中引入的Y22与α7中的W204之间形成了额外的结构域间疏水相互作用,变得更加刚性和耐盐。这些结果表明,增加蛋白质内部的疏水相互作用也是在高盐条件下提高具有工业潜力的酶的耐盐性的一种方法。用于工业应用的酯酶和脂肪酶经常面临如高盐浓度、低水分活度和有机溶剂存在等苛刻条件。然而,关于耐盐酯酶和脂肪酶的报道有限,由于缺乏结构信息,它们耐盐性的潜在机制仍不清楚。在本研究中,我们专注于提高一种盐敏感酯酶E40的耐盐性及其潜在机制。通过引入疏水残基,E40的耐盐性得到了显著提高。对E40及其耐盐突变体的比较结构分析表明,增加的蛋白质内部疏水相互作用使这些突变体比野生型在高浓度盐下更刚性、更稳定。本研究展示了一种提高酶耐盐性的新方法,这有助于对盐敏感酶进行蛋白质工程改造。

相似文献

2
Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormone-sensitive lipase family.
J Biol Chem. 2015 Apr 24;290(17):11188-98. doi: 10.1074/jbc.M115.646182. Epub 2015 Mar 14.
5
Structural Insights into a Novel Esterase from the East Pacific Rise and Its Improved Thermostability by a Semirational Design.
J Agric Food Chem. 2021 Jan 27;69(3):1079-1090. doi: 10.1021/acs.jafc.0c06338. Epub 2021 Jan 14.
7
Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
Biochim Biophys Acta. 2014 Jun;1844(6):1076-82. doi: 10.1016/j.bbapap.2014.03.009. Epub 2014 Mar 22.
8
Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda.
Enzyme Microb Technol. 2016 Apr;85:1-11. doi: 10.1016/j.enzmictec.2015.12.013. Epub 2016 Jan 4.
9
Identification and Characterization of a Novel Salt-Tolerant Esterase from the Deep-Sea Sediment of the South China Sea.
Front Microbiol. 2017 Mar 23;8:441. doi: 10.3389/fmicb.2017.00441. eCollection 2017.
10
A novel esterase from a marine metagenomic library exhibiting salt tolerance ability.
J Microbiol Biotechnol. 2014 Jun 28;24(6):771-80. doi: 10.4014/jmb.1311.11071.

引用本文的文献

1
Role of gut symbionts of insect pests: A novel target for insect-pest control.
Front Microbiol. 2023 Mar 13;14:1146390. doi: 10.3389/fmicb.2023.1146390. eCollection 2023.
2
Molecular Characterization of Novel Family IV and VIII Esterases from a Compost Metagenomic Library.
Microorganisms. 2021 Jul 29;9(8):1614. doi: 10.3390/microorganisms9081614.

本文引用的文献

1
Interdomain hydrophobic interactions modulate the thermostability of microbial esterases from the hormone-sensitive lipase family.
J Biol Chem. 2015 Apr 24;290(17):11188-98. doi: 10.1074/jbc.M115.646182. Epub 2015 Mar 14.
2
A single aromatic core mutation converts a designed "primitive" protein from halophile to mesophile folding.
Protein Sci. 2015 Jan;24(1):27-37. doi: 10.1002/pro.2580. Epub 2014 Oct 25.
4
Salt-bridge energetics in halophilic proteins.
PLoS One. 2014 Apr 17;9(4):e93862. doi: 10.1371/journal.pone.0093862. eCollection 2014.
5
Molecular bases of protein halotolerance.
Biochim Biophys Acta. 2014 Apr;1844(4):850-8. doi: 10.1016/j.bbapap.2014.02.018. Epub 2014 Mar 1.
6
Protein hypersaline adaptation: insight from amino acids with machine learning algorithms.
Protein J. 2013 Apr;32(4):239-45. doi: 10.1007/s10930-013-9484-3.
8
Reduction of salt-requirement of halophilic nucleoside diphosphate kinase by engineering S-S bond.
Arch Biochem Biophys. 2012 Sep 1;525(1):47-52. doi: 10.1016/j.abb.2012.05.021. Epub 2012 Jun 5.
9
Cloning, expression and characterization of a halotolerant esterase from a marine bacterium Pelagibacterium halotolerans B2T.
Extremophiles. 2012 May;16(3):427-35. doi: 10.1007/s00792-012-0442-3. Epub 2012 Apr 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验