Geertz-Hansen Henrik Marcus, Kiemer Lars, Nielsen Morten, Stanchev Kiril, Blom Nikolaj, Brunak Søren, Petersen Thomas Nordahl
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800, Lyngby, Denmark.
Department of Bio and Health Informatics, Technical University of Denmark, Kemitorvet, DK-2800, Lyngby, Denmark.
Proteins. 2017 Nov;85(11):2036-2044. doi: 10.1002/prot.25357. Epub 2017 Aug 10.
Thermostable enzymes for conversion of lignocellulosic biomass into biofuels have significant advantages over enzymes with more moderate themostability due to the challenging application conditions. Experimental discovery of thermostable enzymes is highly cost intensive, and the development of in-silico methods guiding the discovery process would be of high value. To develop such an in-silico method and provide the data foundation of it, we determined the melting temperatures of 602 fungal glycoside hydrolases from the families GH5, 6, 7, 10, 11, 43, and AA9 (formerly GH61). We, then used sequence and homology modeled structure information of these enzymes to develop the ThermoP melting temperature prediction method. Futhermore, in the context of thermostability, we determined the relative importance of 160 molecular features, such as amino acid frequencies and spatial interactions, and exemplified their biological significance. The presented prediction method is made publicly available at http://www.cbs.dtu.dk/services/ThermoP.
由于应用条件具有挑战性,用于将木质纤维素生物质转化为生物燃料的热稳定酶相较于热稳定性较低的酶具有显著优势。热稳定酶的实验发现成本高昂,因此开发指导发现过程的计算机模拟方法将具有很高的价值。为了开发这样一种计算机模拟方法并提供其数据基础,我们测定了来自GH5、6、7、10、11、43和AA9(原GH61)家族的602种真菌糖苷水解酶的解链温度。然后,我们利用这些酶的序列和同源建模结构信息开发了ThermoP解链温度预测方法。此外,在热稳定性方面,我们确定了160种分子特征(如氨基酸频率和空间相互作用)的相对重要性,并举例说明了它们的生物学意义。所提出的预测方法可在http://www.cbs.dtu.dk/services/ThermoP上公开获取。