Suppr超能文献

两亲性N端的结构与动态演变使糖苷水解酶家族12中的酶热稳定性多样化。

Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12.

作者信息

Jiang Xukai, Chen Guanjun, Wang Lushan

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China.

出版信息

Phys Chem Chem Phys. 2016 Aug 21;18(31):21340-50. doi: 10.1039/c6cp02998a. Epub 2016 Jul 18.

Abstract

Understanding the molecular mechanism underlying protein thermostability is central to the process of efficiently engineering thermostable cellulases, which can provide potential advantages in accelerating the conversion of biomass into clean biofuels. Here, we explored the general factors that diversify enzyme thermostability in the glycoside hydrolase family 12 (GH12) using comparative molecular dynamics (MD) simulations coupled to a bioinformatics approach. The results indicated that protein stability is not equally distributed over the whole structure: the N-terminus is the most thermal-sensitive region of the enzymes with a β-sandwich architecture and it tends to lose its secondary structure during the course of protein unfolding. Furthermore, we found that the total interaction energy within the N-terminus is appreciably correlated with enzyme thermostability. Interestingly, the internal interactions within the N-terminus are organized in a special amphipathic pattern in which a hydrophobic packing cluster and a hydrogen bonding cluster lie at the two ends of the N-terminus. Finally, bioinformatics analysis demonstrated that the amphipathic pattern is highly conserved in GH12 and besides that, the evolution of the amino acids in the N-terminal region is an inherent mechanism underlying the diversity of enzyme thermostability. Taken together, our results demonstrate that the N-terminus is generally the structure that determines enzyme thermostability in GH12, and thereby it is also an ideal engineering target. The dynameomics study of a protein family can give a general view of protein functions, which will offer a wide range of applications in future protein engineering.

摘要

了解蛋白质热稳定性的分子机制是高效改造热稳定纤维素酶过程的核心,这在加速生物质转化为清洁生物燃料方面具有潜在优势。在此,我们结合生物信息学方法,通过比较分子动力学(MD)模拟,探究了糖苷水解酶家族12(GH12)中使酶热稳定性多样化的一般因素。结果表明,蛋白质稳定性并非均匀分布于整个结构:N端是具有β-三明治结构的酶中最热敏的区域,在蛋白质解折叠过程中它倾向于失去其二级结构。此外,我们发现N端内的总相互作用能与酶的热稳定性显著相关。有趣的是,N端内的内部相互作用以一种特殊的两亲模式组织,其中一个疏水堆积簇和一个氢键簇位于N端的两端。最后,生物信息学分析表明,两亲模式在GH12中高度保守,除此之外,N端区域氨基酸的进化是酶热稳定性多样性的内在机制。综上所述,我们的结果表明,N端通常是决定GH12中酶热稳定性的结构,因此它也是一个理想的工程改造靶点。对一个蛋白质家族的动态组学研究可以给出蛋白质功能的总体视图,这将在未来的蛋白质工程中提供广泛的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验