Suppr超能文献

外源性 hedgehog 拮抗剂可延迟但不能预防幼年小鼠骨折愈合。

Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice.

机构信息

Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States.

Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States.

出版信息

Bone. 2017 Oct;103:241-251. doi: 10.1016/j.bone.2017.07.017. Epub 2017 Jul 19.

Abstract

Fracture healing recapitulates many aspects of developmental osteogenesis. The hedgehog (Hh) signaling pathway, essential to skeletal development, is upregulated during fracture healing, although its importance is unclear. Our goal was to assess the functional importance of Hh signaling in endochondral fracture healing. We created closed, transverse diaphyseal femur fractures in mice, stabilized with an intramedullary pin, and administered a systemic Hh inhibitor or vehicle. Because Hh pathway activation is mediated by the receptor Smoothened (Smo), we used the Smo antagonist GDC-0449 (GDC, 50mg/kg, twice daily) to target the pathway. First, in vehicle-treated 10-wk. female C57BL/6 mice we confirmed that Hh signaling was increased in fracture callus compared to intact bone, with >5-fold upregulation of target genes Ptch1 and Gli1. Additionally, using 10-wk. male and female Gli1 reporter mice, we saw a strong activation of the reporter in the osseous regions of the fracture callus 7-10days after fracture. GDC treatment significantly blunted these responses, indicating effective inhibition of fracture-induced Hh signaling in bone. Moreover, microCT analysis revealed that GDC treatment significantly reduced cancellous and cortical bone volume at non-fracture sites (tibial metaphysis and diaphysis), suggesting that the drug inhibited normal bone formation. GDC treatment had a modest effect on fracture healing, with evidence of delayed callus mineralization radiographically (significantly lower Goldberg score at day 14) and by microCT (reduced callus vBMD at 14days), and a delay in the recovery of torsional rotation to normal (elevated rotation-at-peak torque at 21days). On the other hand, GDC treatment did not inhibit qPCR or morphological measures of chondrogenesis or angiogenesis, and did not impair the recovery of failure torque (at day 14 or 21), a measure of biomechanical competence. In summary, GDC treatment inhibited Hh signaling, which delayed but did not prevent fracture healing in young mice. We conclude that Hh signaling is strongly induced after fracture and may play a role in early callus mineralization, although it does not appear to be required for eventual healing.

摘要

骨折愈合过程中会重现许多发育性骨生成的过程。 hedgehog(Hh)信号通路对骨骼发育至关重要,在骨折愈合过程中会被上调,但其重要性尚不清楚。我们的目标是评估 Hh 信号在软骨内骨折愈合中的功能重要性。我们在小鼠的骨干中造成闭合性、横向的骨折,并用髓内钉固定,然后给予系统的 Hh 抑制剂或载体。由于 Hh 通路的激活是由受体 smoothened(Smo)介导的,我们使用 Smo 拮抗剂 GDC-0449(GDC,50mg/kg,每日两次)来靶向该通路。首先,在载体处理的 10 周龄 C57BL/6 雌性小鼠中,我们证实与完整骨相比,骨折痂中的 Hh 信号增加,靶基因 Ptch1 和 Gli1 的表达增加了 5 倍以上。此外,使用 10 周龄雄性和雌性 Gli1 报告小鼠,我们在骨折后 7-10 天在骨折痂的骨区看到了报告基因的强烈激活。GDC 治疗显著抑制了这些反应,表明在骨中有效抑制了骨折诱导的 Hh 信号。此外,microCT 分析显示,GDC 治疗显著降低了非骨折部位(胫骨干骺端和骨干)的松质骨和皮质骨体积,表明该药物抑制了正常骨形成。GDC 治疗对骨折愈合有一定的影响,影像学上表现为骨痂矿化延迟(第 14 天的 Goldberg 评分明显较低)和 microCT(第 14 天骨痂 vBMD 降低),以及扭转旋转至正常的恢复延迟(第 21 天时峰值扭矩时的旋转增加)。另一方面,GDC 治疗并没有抑制 qPCR 或软骨形成或血管生成的形态学测量,也没有损害失效扭矩(第 14 天或 21 天)的恢复,这是生物力学能力的一个衡量标准。综上所述,GDC 治疗抑制了 Hh 信号,这延迟了但并没有阻止年轻小鼠的骨折愈合。我们得出结论,Hh 信号在骨折后被强烈诱导,可能在早期骨痂矿化中发挥作用,尽管它似乎不是最终愈合所必需的。

相似文献

1
Exogenous hedgehog antagonist delays but does not prevent fracture healing in young mice.
Bone. 2017 Oct;103:241-251. doi: 10.1016/j.bone.2017.07.017. Epub 2017 Jul 19.
2
Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing.
Bone. 2015 Dec;81:524-532. doi: 10.1016/j.bone.2015.09.002. Epub 2015 Sep 6.
3
Activation of hedgehog signaling by systemic agonist improves fracture healing in aged mice.
J Orthop Res. 2019 Jan;37(1):51-59. doi: 10.1002/jor.24017. Epub 2018 Dec 27.
5
Local administration of a hedgehog agonist accelerates fracture healing in a mouse model.
Biochem Biophys Res Commun. 2016 Oct 28;479(4):772-778. doi: 10.1016/j.bbrc.2016.09.134. Epub 2016 Sep 28.
7
The use of micelles to deliver potential hedgehog pathway inhibitor for the treatment of liver fibrosis.
Theranostics. 2019 Oct 12;9(25):7537-7555. doi: 10.7150/thno.38913. eCollection 2019.
8
Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance.
Cancer Res. 2011 Jan 15;71(2):435-44. doi: 10.1158/0008-5472.CAN-10-2876. Epub 2010 Dec 1.

引用本文的文献

1
Targeting the hedgehog signaling pathway to improve tendon-to-bone integration.
Osteoarthritis Cartilage. 2023 Sep;31(9):1202-1213. doi: 10.1016/j.joca.2023.04.013. Epub 2023 May 3.
3
A Shifting Paradigm: Transformation of Cartilage to Bone during Bone Repair.
J Dent Res. 2023 Jan;102(1):13-20. doi: 10.1177/00220345221125401. Epub 2022 Oct 27.
4
Niobium promotes fracture healing in rats by regulating the PI3K-Akt signalling pathway: An and study.
J Orthop Translat. 2022 Oct 13;37:113-125. doi: 10.1016/j.jot.2022.08.007. eCollection 2022 Nov.
5
The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing.
Bone Rep. 2022 Aug 28;17:101616. doi: 10.1016/j.bonr.2022.101616. eCollection 2022 Dec.
6
Cryogel Scaffold-Mediated Delivery of Adipose-Derived Stem Cells Promotes Healing in Murine Model of Atrophic Non-Union.
Front Bioeng Biotechnol. 2022 May 5;10:851904. doi: 10.3389/fbioe.2022.851904. eCollection 2022.
7
Ablation of Proliferating Osteoblast Lineage Cells After Fracture Leads to Atrophic Nonunion in a Mouse Model.
J Bone Miner Res. 2021 Nov;36(11):2243-2257. doi: 10.1002/jbmr.4424. Epub 2021 Sep 7.
8
Type 1 diabetic Akita mice have low bone mass and impaired fracture healing.
Bone. 2021 Jun;147:115906. doi: 10.1016/j.bone.2021.115906. Epub 2021 Mar 2.
10
Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures.
J Orthop Translat. 2021 Jan 9;27:96-100. doi: 10.1016/j.jot.2020.11.007. eCollection 2021 Mar.

本文引用的文献

1
Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors.
Cancers (Basel). 2016 Feb 15;8(2):22. doi: 10.3390/cancers8020022.
2
A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development.
Dev Biol. 2016 Mar 1;411(1):72-84. doi: 10.1016/j.ydbio.2016.01.008. Epub 2016 Jan 16.
3
Hedgehog signaling mediates woven bone formation and vascularization during stress fracture healing.
Bone. 2015 Dec;81:524-532. doi: 10.1016/j.bone.2015.09.002. Epub 2015 Sep 6.
5
The role of hedgehog signalling in skeletal health and disease.
Nat Rev Rheumatol. 2015 Sep;11(9):552-60. doi: 10.1038/nrrheum.2015.84. Epub 2015 Jun 16.
6
Fracture healing: mechanisms and interventions.
Nat Rev Rheumatol. 2015 Jan;11(1):45-54. doi: 10.1038/nrrheum.2014.164. Epub 2014 Sep 30.
7
Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation.
J Orthop Res. 2014 Apr;32(4):581-6. doi: 10.1002/jor.22562. Epub 2013 Dec 17.
8
Proximal humerus and humeral shaft nonunions.
J Am Acad Orthop Surg. 2013 Sep;21(9):538-47. doi: 10.5435/JAAOS-21-09-538.
10
TGF-β and BMP signaling in osteoblast differentiation and bone formation.
Int J Biol Sci. 2012;8(2):272-88. doi: 10.7150/ijbs.2929. Epub 2012 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验