Suppr超能文献

药物代谢动力学和定量系统药理学在癌症治疗中的应用:以 luminal A 型乳腺癌为例。

Application of pharmacometrics and quantitative systems pharmacology to cancer therapy: The example of luminal a breast cancer.

机构信息

Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, 6550 Sanger Road, Room #469, Orlando, FL, 32827, USA.

Institute for Therapeutic Innovation, Department of Medicine, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA.

出版信息

Pharmacol Res. 2017 Oct;124:20-33. doi: 10.1016/j.phrs.2017.07.015. Epub 2017 Jul 19.

Abstract

Breast cancer (BC) is the most common cancer in women, and the second most frequent cause of cancer-related deaths in women worldwide. It is a heterogeneous disease composed of multiple subtypes with distinct morphologies and clinical implications. Quantitative systems pharmacology (QSP) is an emerging discipline bridging systems biology with pharmacokinetics (PK) and pharmacodynamics (PD) leveraging the systematic understanding of drugs' efficacy and toxicity. Despite numerous challenges in applying computational methodologies for QSP and mechanism-based PK/PD models to biological, physiological, and pharmacological data, bridging these disciplines has the potential to enhance our understanding of complex disease systems such as BC. In QSP/PK/PD models, various sources of data are combined including large, multi-scale experimental data such as -omics (i.e. genomics, transcriptomics, proteomics, and metabolomics), biomarkers (circulating and bound), PK, and PD endpoints. This offers a means for a translational application from pre-clinical mathematical models to patients, bridging the bench to bedside paradigm. Not only can these models be applied to inform and advance BC drug development, but they also could aid in optimizing combination therapies and rational dosing regimens for BC patients. Here, we review the current literature pertaining to the application of QSP and pharmacometrics-based pharmacotherapy in BC including bottom-up and top-down modeling approaches. Bottom-up modeling approaches employ mechanistic signal transduction pathways to predict the behavior of a biological system. The ones that are addressed in this review include signal transduction and homeostatic feedback modeling approaches. Alternatively, top-down modeling techniques are bioinformatics reconstruction techniques that infer static connections between molecules that make up a biological network and include (1) Bayesian networks, (2) co-expression networks, and (3) module-based approaches. This review also addresses novel techniques which utilize the principles of systems biology, synthetic lethality and tumor priming, both of which are discussed in relationship to novel drug targets and existing BC therapies. By utilizing QSP approaches, clinicians may develop a platform for improved dose individualization for subpopulation of BC patients, strengthen rationale in treatment designs, and explore mechanism elucidation for improving future treatments in BC medicine.

摘要

乳腺癌(BC)是女性中最常见的癌症,也是全球女性癌症相关死亡的第二大主要原因。它是一种由多个具有不同形态和临床意义的亚型组成的异质性疾病。定量系统药理学(QSP)是一个新兴学科,它将系统生物学与药代动力学(PK)和药效动力学(PD)相结合,利用对药物疗效和毒性的系统理解。尽管在将计算方法应用于基于机制的 PK/PD 模型和 QSP 方面存在许多挑战,但这些学科的结合有可能增强我们对复杂疾病系统(如 BC)的理解。在 QSP/PK/PD 模型中,结合了各种来源的数据,包括大规模、多尺度的实验数据,如 -omics(即基因组学、转录组学、蛋白质组学和代谢组学)、生物标志物(循环和结合)、PK 和 PD 终点。这为从临床前数学模型向患者进行转化应用提供了一种手段,从而实现了从基础到临床的范式转变。这些模型不仅可用于为 BC 药物开发提供信息和推动其发展,还可帮助优化 BC 患者的联合治疗和合理剂量方案。在这里,我们回顾了与 QSP 和基于药代动力学的乳腺癌治疗应用相关的当前文献,包括自下而上和自上而下的建模方法。自下而上的建模方法利用机械信号转导途径来预测生物系统的行为。本文中讨论的方法包括信号转导和动态平衡反馈建模方法。或者,自上而下的建模技术是生物信息学重建技术,它推断构成生物网络的分子之间的静态连接,包括(1)贝叶斯网络,(2)共表达网络,和(3)基于模块的方法。本文还讨论了利用系统生物学原理、合成致死和肿瘤启动的新技术,这两种技术都与新的药物靶点和现有的 BC 治疗方法有关。通过利用 QSP 方法,临床医生可以为 BC 患者亚群的个体化剂量调整开发一个平台,加强治疗设计的合理性,并探索机制阐明以改善 BC 医学的未来治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验