Jamdhade Ashwini R, Sunkar Ramanjulu, Hivrale Vandana K
Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MS, 431004, India.
Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
Methods Mol Biol. 2017;1631:221-227. doi: 10.1007/978-1-4939-7136-7_13.
In plants, especially in chloroplasts, superoxide radical is generated when an electron is transferred to dimolecular O due to decreased activity of Photosystem I. The superoxide (O) radical accumulation is more rampant in plants exposed to abiotic stresses due to oxidation of photosystem components. Excessive superoxide radical accumulation will lead to oxidative damage to the cellular macromolecules. The ubiquitous superoxide dismutases (SODs) represent critical enzymatic antioxidant system present in cells, which can catalyze the disproportion of superoxide (O) radical rapidly into hydrogen peroxide (HO) and molecular oxygen. Depending on the metal cofactor present, the plant SODs are classified into Cu/ZnSOD, MnSOD, and FeSOD. The activity of SODs can be quantified zymographically. Additionally, using this method, different classes of SODs can be distinguished by using HO, KCN, and NaN
在植物中,尤其是在叶绿体中,当由于光系统I活性降低,一个电子转移到双分子氧时,就会产生超氧自由基。由于光系统成分的氧化作用,在遭受非生物胁迫的植物中,超氧(O)自由基的积累更为猖獗。过量的超氧自由基积累会导致细胞大分子的氧化损伤。普遍存在的超氧化物歧化酶(SOD)是细胞中关键的酶促抗氧化系统,它可以催化超氧(O)自由基迅速歧化为过氧化氢(H₂O₂)和分子氧。根据所含金属辅因子的不同,植物超氧化物歧化酶可分为铜/锌超氧化物歧化酶、锰超氧化物歧化酶和铁超氧化物歧化酶。超氧化物歧化酶的活性可以通过酶谱法进行定量。此外,使用这种方法,可以通过使用H₂O₂、KCN和NaN₃来区分不同类别的超氧化物歧化酶。