Fridovich I
Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
Annu Rev Biochem. 1995;64:97-112. doi: 10.1146/annurev.bi.64.070195.000525.
O2- oxidizes the [4Fe-4S] clusters of dehydratases, such as aconitase, causing-inactivation and release of Fe(II), which may then reduce H2O2 to OH- +OH.. SODs inhibit such HO. production by scavengingO2-, but Cu, ZnSODs, by virtue of a nonspecific peroxidase activity, may peroxidize spin trapping agents and thus give the appearance of catalyzing OH. production from H2O2. There is a glycosylated, tetrameric Cu, ZnSOD in the extracellular space that binds to acidic glycosamino-glycans. It minimizes the reaction of O2- with NO. E. coli, and other gram negative microorganisms, contain a periplasmic Cu, ZnSOD that may serve to protect against extracellular O2-. Mn(III) complexes of multidentate macrocyclic nitrogenous ligands catalyze the dismutation of O2- and are being explored as potential pharmaceutical agents. SOD-null mutants have been prepared to reveal the biological effects of O2-. SodA, sodB E. coli exhibit dioxygen-dependent auxotrophies and enhanced mutagenesis, reflecting O2(-)-sensitive biosynthetic pathways and DNA damage. Yeast, lacking either Cu, ZnSOD or MnSOD, are oxygen intolerant, and the double mutant was hypermutable and defective in sporulation and exhibited requirements for methionine and lysine. A Cu, ZnSOD-null Drosophila exhibited a shortened lifespan.
超氧阴离子(O2-)会氧化脱水酶(如乌头酸酶)的[4Fe-4S]簇,导致其失活并释放出亚铁离子(Fe(II)),然后Fe(II)可能会将过氧化氢(H2O2)还原为氢氧根离子(OH-)和羟基自由基(OH·)。超氧化物歧化酶(SODs)通过清除O2-来抑制此类羟基自由基的产生,但铜锌超氧化物歧化酶(Cu, ZnSODs)由于具有非特异性过氧化物酶活性,可能会使自旋捕获剂发生过氧化反应,从而看似催化了由H2O2产生OH·的过程。细胞外空间存在一种糖基化的四聚体铜锌超氧化物歧化酶,它能与酸性糖胺聚糖结合。这可将O2-与一氧化氮(NO)的反应降至最低。大肠杆菌及其他革兰氏阴性微生物含有一种周质铜锌超氧化物歧化酶,可能起到抵御细胞外O2-的作用。多齿大环含氮配体的锰(III)配合物催化O2-的歧化反应,正被探索作为潜在的药物制剂。已制备出超氧化物歧化酶缺失突变体以揭示O2-的生物学效应。大肠杆菌的sodA、sodB突变体表现出依赖氧气的营养缺陷型和诱变增强,这反映了对O2-敏感的生物合成途径和DNA损伤。缺乏铜锌超氧化物歧化酶或锰超氧化物歧化酶的酵母对氧气不耐受,双突变体具有高突变性,在孢子形成方面存在缺陷,并且对甲硫氨酸和赖氨酸有需求。一种缺失铜锌超氧化物歧化酶的果蝇寿命缩短。