Suppr超能文献

用于基因关联研究中检测单核苷酸多态性(SNP)集效应的广义高阶检验法

The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies.

作者信息

Barnett Ian, Mukherjee Rajarshi, Lin Xihong

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, MA.

Department of Statistics, Stanford University, Stanford, CA.

出版信息

J Am Stat Assoc. 2017;112(517):64-76. doi: 10.1080/01621459.2016.1192039. Epub 2017 May 3.

Abstract

It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic -value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online.

摘要

研究基因、遗传通路和网络对复杂疾病风险的影响具有重大意义。这些遗传结构各自包含多个单核苷酸多态性(SNP),它们通常相互关联且共同发挥作用,数量可能众多。然而,在一个遗传结构中,通常只有一小部分稀疏的SNP与感兴趣的疾病相关。在本文中,我们提出广义更高批评(GHC)方法来检验SNP集与疾病结局之间的关联。更高批评是一种传统上用于高维信号检测的检验方法,其前提是边际检验统计量相互独立且参数数量非常大。然而,由于SNP之间的连锁不平衡以及每个遗传结构中SNP集的SNP数量有限,这些假设在基因关联研究中并不总是成立。所提出的GHC克服了更高批评的局限性,它允许SNP集中的SNP之间存在任意的相关结构,同时能对SNP集中任意有限数量的SNP进行精确的p值计算。我们得到了GHC检验的检测边界。我们通过模拟在一系列具有不同相关结构和信号稀疏性的遗传区域上,将GHC方法的功效与现有的SNP集检验方法进行了实证比较。我们应用所提出的方法分析了CGEM乳腺癌全基因组关联研究。本文的补充材料可在网上获取。

相似文献

引用本文的文献

3
Ensemble methods for testing a global null.用于检验全局原假设的集成方法。
J R Stat Soc Series B Stat Methodol. 2024 Apr;86(2):461-486. doi: 10.1093/jrsssb/qkad131. Epub 2023 Nov 30.
4
ADELLE: A global testing method for trans-eQTL mapping.阿黛尔:一种用于反式表达数量性状基因座定位的全局测试方法。
PLoS Genet. 2025 Jan 10;21(1):e1011563. doi: 10.1371/journal.pgen.1011563. eCollection 2025 Jan.
7
Accurate and Ultra-Efficient -Value Calculation for Higher Criticism Tests.高阶检验的准确且超高效值计算
J Comput Graph Stat. 2024;33(2):463-476. doi: 10.1080/10618600.2023.2270720. Epub 2023 Nov 27.

本文引用的文献

7
Optimal tests for rare variant effects in sequencing association studies.测序关联研究中罕见变异效应的最优检验。
Biostatistics. 2012 Sep;13(4):762-75. doi: 10.1093/biostatistics/kxs014. Epub 2012 Jun 14.
8
Five years of GWAS discovery.GWAS 发现的五年。
Am J Hum Genet. 2012 Jan 13;90(1):7-24. doi: 10.1016/j.ajhg.2011.11.029.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验