Chaganti Shikha, Nabar Kunal P, Nelson Katrina M, Mawn Louise A, Landman Bennett A
Computer Science, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN USA 37235.
Electrical Engineering, Vanderbilt University, 2301 Vanderbilt Place, Nashville, TN USA 37235.
Proc SPIE Int Soc Opt Eng. 2017 Feb 11;10138. doi: 10.1117/12.2254618. Epub 2017 Mar 13.
We examine imaging and electronic medical records (EMR) of 588 subjects over five major disease groups that affect optic nerve function. An objective evaluation of the role of imaging and EMR data in diagnosis of these conditions would improve understanding of these diseases and help in early intervention. We developed an automated image-processing pipeline that identifies the orbital structures within the human eyes from computed tomography (CT) scans, calculates structural size, and performs volume measurements. We customized the EMR-based phenome-wide association study (PheWAS) to derive diagnostic EMR phenotypes that occur at least two years prior to the onset of the conditions of interest from a separate cohort of 28,411 ophthalmology patients. We used random forest classifiers to evaluate the predictive power of image-derived markers, EMR phenotypes, and clinical visual assessments in identifying disease cohorts from a control group of 763 patients without optic nerve disease. Image-derived markers showed more predictive power than clinical visual assessments or EMR phenotypes. However, the addition of EMR phenotypes to the imaging markers improves the classification accuracy against controls: the AUC improved from 0.67 to 0.88 for glaucoma, 0.73 to 0.78 for intrinsic optic nerve disease, 0.72 to 0.76 for optic nerve edema, 0.72 to 0.77 for orbital inflammation, and 0.81 to 0.85 for thyroid eye disease. This study illustrates the importance of diagnostic context for interpretation of image-derived markers and the proposed PheWAS technique provides a flexible approach for learning salient features of patient history and incorporating these data into traditional machine learning analyses.
我们研究了588名患有影响视神经功能的五大主要疾病组患者的影像学和电子病历(EMR)。对视神经功能的五大主要疾病组患者的影像学和电子病历(EMR)数据在这些疾病诊断中的作用进行客观评估,将有助于加深对这些疾病的理解,并有助于早期干预。我们开发了一种自动化图像处理流程,可从计算机断层扫描(CT)中识别出人眼内的眼眶结构,计算结构大小,并进行体积测量。我们定制了基于电子病历的全表型关联研究(PheWAS),以从另外28411名眼科患者队列中得出在感兴趣疾病发病至少两年前出现的诊断性电子病历表型。我们使用随机森林分类器来评估图像衍生标记、电子病历表型和临床视力评估在从763名无视神经疾病的对照组患者中识别疾病队列的预测能力。图像衍生标记显示出比临床视力评估或电子病历表型更强的预测能力。然而,将电子病历表型添加到成像标记中可提高与对照组相比的分类准确性:青光眼的曲线下面积(AUC)从0.67提高到0.88,视神经内在疾病从0.73提高到0.78,视神经水肿从0.72提高到0.76,眼眶炎症从0.72提高到0.77,甲状腺眼病从0.81提高到0.85。本研究说明了诊断背景对解释图像衍生标记的重要性,并且所提出的全表型关联研究(PheWAS)技术提供了一种灵活的方法,用于了解患者病史的显著特征,并将这些数据纳入传统机器学习分析。