Suppr超能文献

临床数据的二次利用:范德比尔特方法

Secondary use of clinical data: the Vanderbilt approach.

作者信息

Danciu Ioana, Cowan James D, Basford Melissa, Wang Xiaoming, Saip Alexander, Osgood Susan, Shirey-Rice Jana, Kirby Jacqueline, Harris Paul A

机构信息

Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave., 6th Floor, Nashville, TN 37203, United States; Department of Biomedical Informatics, Vanderbilt University Medical Center, 2209 Garland Ave., Nashville, TN 37232, United States.

Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, 2525 West End Ave., 6th Floor, Nashville, TN 37203, United States.

出版信息

J Biomed Inform. 2014 Dec;52:28-35. doi: 10.1016/j.jbi.2014.02.003. Epub 2014 Feb 14.

Abstract

The last decade has seen an exponential growth in the quantity of clinical data collected nationwide, triggering an increase in opportunities to reuse the data for biomedical research. The Vanderbilt research data warehouse framework consists of identified and de-identified clinical data repositories, fee-for-service custom services, and tools built atop the data layer to assist researchers across the enterprise. Providing resources dedicated to research initiatives benefits not only the research community, but also clinicians, patients and institutional leadership. This work provides a summary of our approach in the secondary use of clinical data for research domain, including a description of key components and a list of lessons learned, designed to assist others assembling similar services and infrastructure.

摘要

在过去十年中,全国收集的临床数据量呈指数级增长,这为将这些数据重新用于生物医学研究创造了更多机会。范德比尔特研究数据仓库框架由已识别和去识别的临床数据存储库、收费定制服务以及构建在数据层之上以协助整个机构的研究人员的工具组成。为研究项目提供专门资源不仅有利于研究团体,也有利于临床医生、患者和机构领导层。本文总结了我们在将临床数据二次用于研究领域方面的方法,包括关键组件的描述和经验教训列表,旨在帮助其他机构组建类似的服务和基础设施。

相似文献

1
Secondary use of clinical data: the Vanderbilt approach.
J Biomed Inform. 2014 Dec;52:28-35. doi: 10.1016/j.jbi.2014.02.003. Epub 2014 Feb 14.
2
StarBRITE: the Vanderbilt University Biomedical Research Integration, Translation and Education portal.
J Biomed Inform. 2011 Aug;44(4):655-62. doi: 10.1016/j.jbi.2011.01.014. Epub 2011 Feb 15.
5
Crossing the chasm: information technology to biomedical informatics.
J Investig Med. 2011 Jun;59(5):768-79. doi: 10.2310/JIM.0b013e31821452bf.
6
@neurIST: infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services.
IEEE Trans Inf Technol Biomed. 2010 Nov;14(6):1365-77. doi: 10.1109/TITB.2010.2049268. Epub 2010 Apr 29.
9
Portal of medical data models: information infrastructure for medical research and healthcare.
Database (Oxford). 2016 Feb 11;2016. doi: 10.1093/database/bav121. Print 2016.
10
A Multidimensional Data Warehouse for Community Health Centers.
AMIA Annu Symp Proc. 2015 Nov 5;2015:1976-84. eCollection 2015.

引用本文的文献

3
Longitudinal Masked Representation Learning for Pulmonary Nodule Diagnosis from Language Embedded EHRs.
medRxiv. 2025 May 11:2025.05.09.25327341. doi: 10.1101/2025.05.09.25327341.
4
A quantitative analysis of the use of anonymization in biomedical research.
NPJ Digit Med. 2025 May 14;8(1):279. doi: 10.1038/s41746-025-01644-9.
5
Hospitalizations for pediatric catatonia in neurodivergent and neurotypical patients.
Gen Hosp Psychiatry. 2025 Jul-Aug;95:133-139. doi: 10.1016/j.genhosppsych.2025.05.003. Epub 2025 May 7.
7
Automating the Addiction Behaviors Checklist for Problematic Opioid Use Identification.
JAMA Psychiatry. 2025 Apr 9. doi: 10.1001/jamapsychiatry.2025.0424.
8
Clinical Research Informatics: a Decade-in-Review.
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.
9
Beyond Phecodes: leveraging PheMAP to identify patients lacking diagnosis codes in electronic health records.
J Am Med Inform Assoc. 2025 Jun 1;32(6):1007-1014. doi: 10.1093/jamia/ocaf055.
10
Profiling Swallowing Safety and Physiology in People With Huntington's Disease.
Neurogastroenterol Motil. 2025 Jul;37(7):e70035. doi: 10.1111/nmo.70035. Epub 2025 Mar 27.

本文引用的文献

1
Harvest: an open platform for developing web-based biomedical data discovery and reporting applications.
J Am Med Inform Assoc. 2014 Mar-Apr;21(2):379-83. doi: 10.1136/amiajnl-2013-001825. Epub 2013 Oct 16.
2
Associations between KCNJ6 (GIRK2) gene polymorphisms and pain-related phenotypes.
Pain. 2013 Dec;154(12):2853-2859. doi: 10.1016/j.pain.2013.08.026. Epub 2013 Aug 28.
4
Causes and significance of markedly elevated serum ferritin levels in an academic medical center.
J Clin Rheumatol. 2013 Sep;19(6):324-8. doi: 10.1097/RHU.0b013e31829ce01f.
5
Development of upper tract stones in patients with congenital neurogenic bladder.
J Pediatr Urol. 2014 Feb;10(1):112-7. doi: 10.1016/j.jpurol.2013.07.005. Epub 2013 Aug 7.
6
Applying active learning to high-throughput phenotyping algorithms for electronic health records data.
J Am Med Inform Assoc. 2013 Dec;20(e2):e253-9. doi: 10.1136/amiajnl-2013-001945. Epub 2013 Jul 13.
7
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data.
PLoS One. 2013 Jun 24;8(6):e66341. doi: 10.1371/journal.pone.0066341. Print 2013.
8
BET1L and TNRC6B associate with uterine fibroid risk among European Americans.
Hum Genet. 2013 Aug;132(8):943-53. doi: 10.1007/s00439-013-1306-3. Epub 2013 Apr 19.
9
A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry.
Nat Genet. 2013 Jun;45(6):690-6. doi: 10.1038/ng.2608. Epub 2013 Apr 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验