Suppr超能文献

非局部统计标签融合的多图谱分割。

Non-local statistical label fusion for multi-atlas segmentation.

机构信息

Electrical Engineering, Vanderbilt University, Nashville, TN 37235-1679, USA.

出版信息

Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.

Abstract

Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring spatial information from an existing dataset ("atlases") to a previously unseen context ("target") through image registration. The method to resolve voxelwise label conflicts between the registered atlases ("label fusion") has a substantial impact on segmentation quality. Ideally, statistical fusion algorithms (e.g., STAPLE) would result in accurate segmentations as they provide a framework to elegantly integrate models of rater performance. The accuracy of statistical fusion hinges upon accurately modeling the underlying process of how raters err. Despite success on human raters, current approaches inaccurately model multi-atlas behavior as they fail to seamlessly incorporate exogenous intensity information into the estimation process. As a result, locally weighted voting algorithms represent the de facto standard fusion approach in clinical applications. Moreover, regardless of the approach, fusion algorithms are generally dependent upon large atlas sets and highly accurate registration as they implicitly assume that the registered atlases form a collectively unbiased representation of the target. Herein, we propose a novel statistical fusion algorithm, Non-Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means perspective in order to learn what label an atlas would have observed, given perfect correspondence. Through this reformulation, NLS (1) seamlessly integrates intensity into the estimation process, (2) provides a theoretically consistent model of multi-atlas observation error, and (3) largely diminishes the need for large atlas sets and very high-quality registrations. We assess the sensitivity and optimality of the approach and demonstrate significant improvement in two empirical multi-atlas experiments.

摘要

多图谱分割提供了一种通用的、全自动的方法,通过图像配准,从现有数据集(“图谱”)向以前未见的情况(“目标”)传递空间信息。解决已注册图谱之间体素级标签冲突的方法(“标签融合”)对分割质量有重大影响。理想情况下,统计融合算法(例如 STAPLE)将导致准确的分割,因为它们提供了一个框架,可以优雅地整合评分者表现的模型。统计融合的准确性取决于如何准确地对评分者错误的潜在过程进行建模。尽管在人类评分者方面取得了成功,但当前的方法未能将外源性强度信息无缝地纳入估计过程中,因此无法准确地模拟多图谱行为。结果,局部加权投票算法代表了临床应用中事实上的融合方法标准。此外,无论采用何种方法,融合算法通常都依赖于大型图谱集和高度准确的配准,因为它们隐含地假设已注册的图谱共同形成了目标的无偏表示。在此,我们提出了一种新颖的统计融合算法,即非局部 STAPLE(NLS)。NLS 从非局部均值的角度重新构建了 STAPLE 框架,以便在完全对应的情况下学习图谱会观察到什么标签。通过这种重新构建,NLS(1)无缝地将强度纳入估计过程,(2)提供了一种多图谱观察误差的理论一致模型,(3)在很大程度上减少了对大型图谱集和非常高质量配准的需求。我们评估了该方法的敏感性和最优性,并在两个经验性的多图谱实验中证明了显著的改进。

相似文献

1
Non-local statistical label fusion for multi-atlas segmentation.
Med Image Anal. 2013 Feb;17(2):194-208. doi: 10.1016/j.media.2012.10.002. Epub 2012 Nov 29.
2
Non-local STAPLE: an intensity-driven multi-atlas rater model.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):426-34. doi: 10.1007/978-3-642-33454-2_53.
3
A unified framework for cross-modality multi-atlas segmentation of brain MRI.
Med Image Anal. 2013 Dec;17(8):1181-91. doi: 10.1016/j.media.2013.08.001. Epub 2013 Aug 19.
4
Characterizing spatially varying performance to improve multi-atlas multi-label segmentation.
Inf Process Med Imaging. 2011;22:85-96. doi: 10.1007/978-3-642-22092-0_8.
5
Multi-atlas segmentation with robust label transfer and label fusion.
Inf Process Med Imaging. 2013;23:548-59. doi: 10.1007/978-3-642-38868-2_46.
6
Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.
Med Image Anal. 2014 Dec;18(8):1262-73. doi: 10.1016/j.media.2014.06.010. Epub 2014 Jul 2.
7
Formulating spatially varying performance in the statistical fusion framework.
IEEE Trans Med Imaging. 2012 Jun;31(6):1326-36. doi: 10.1109/TMI.2012.2190992. Epub 2012 Mar 15.
8
A probabilistic, non-parametric framework for inter-modality label fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):576-83. doi: 10.1007/978-3-642-40760-4_72.
9
Multi-atlas segmentation with augmented features for cardiac MR images.
Med Image Anal. 2015 Jan;19(1):98-109. doi: 10.1016/j.media.2014.09.005. Epub 2014 Sep 19.
10
Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote.
Med Image Anal. 2010 Apr;14(2):219-26. doi: 10.1016/j.media.2009.12.004. Epub 2009 Dec 16.

引用本文的文献

2
Few sex differences in regional gray matter volume growth trajectories across early childhood.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00154. eCollection 2024.
4
Cerebrospinal fluid YKL-40 relates to white matter hyperintensity progression in females but not males over a 6-year period.
Alzheimers Dement (Amst). 2025 May 9;17(2):e70110. doi: 10.1002/dad2.70110. eCollection 2025 Apr-Jun.
5
Association Between Postsurgical Functional Connectivity and Seizure Outcome in Patients With Temporal Lobe Epilepsy.
Neurology. 2024 Oct 8;103(7):e209816. doi: 10.1212/WNL.0000000000209816. Epub 2024 Sep 3.
6
Sex and age effects on gray matter volume trajectories in young children with prenatal alcohol exposure.
Front Hum Neurosci. 2024 Apr 10;18:1379959. doi: 10.3389/fnhum.2024.1379959. eCollection 2024.
7
Learning from multiple annotators for medical image segmentation.
Pattern Recognit. 2023 Jun;138:None. doi: 10.1016/j.patcog.2023.109400.
8
Structural brain differences in essential tremor and Parkinson's disease deep brain stimulation patients.
J Clin Neurosci. 2023 Sep;115:121-128. doi: 10.1016/j.jocn.2023.08.001. Epub 2023 Aug 5.
9
Structural disconnection relates to functional changes after temporal lobe epilepsy surgery.
Brain. 2023 Sep 1;146(9):3913-3922. doi: 10.1093/brain/awad117.

本文引用的文献

1
Simultaneous Segmentation and Statistical Label Fusion.
Proc SPIE Int Soc Opt Eng. 2012 Feb 23;8314:83140Y-. doi: 10.1117/12.910794.
2
Non-local STAPLE: an intensity-driven multi-atlas rater model.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):426-34. doi: 10.1007/978-3-642-33454-2_53.
3
Multi-Atlas Segmentation with Joint Label Fusion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
4
Estimating a reference standard segmentation with spatially varying performance parameters: local MAP STAPLE.
IEEE Trans Med Imaging. 2012 Aug;31(8):1593-606. doi: 10.1109/TMI.2012.2197406. Epub 2012 May 2.
5
Multi-atlas multi-shape segmentation of fetal brain MRI for volumetric and morphometric analysis of ventriculomegaly.
Neuroimage. 2012 Apr 15;60(3):1819-31. doi: 10.1016/j.neuroimage.2012.01.128. Epub 2012 Feb 10.
6
Formulating spatially varying performance in the statistical fusion framework.
IEEE Trans Med Imaging. 2012 Jun;31(6):1326-36. doi: 10.1109/TMI.2012.2190992. Epub 2012 Mar 15.
7
Evaluation of multiple-atlas-based strategies for segmentation of the thyroid gland in head and neck CT images for IMRT.
Phys Med Biol. 2012 Jan 7;57(1):93-111. doi: 10.1088/0031-9155/57/1/93. Epub 2011 Nov 29.
8
Robust statistical fusion of image labels.
IEEE Trans Med Imaging. 2012 Feb;31(2):512-22. doi: 10.1109/TMI.2011.2172215. Epub 2011 Oct 14.
9
Learning likelihoods for labeling (L3): a general multi-classifier segmentation algorithm.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):322-9. doi: 10.1007/978-3-642-23626-6_40.
10
Foibles, follies, and fusion: web-based collaboration for medical image labeling.
Neuroimage. 2012 Jan 2;59(1):530-9. doi: 10.1016/j.neuroimage.2011.07.085. Epub 2011 Aug 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验