Suppr超能文献

使用回答集编程识别生物调控网络中的分支转变

Identification of bifurcation transitions in biological regulatory networks using Answer-Set Programming.

作者信息

Fitime Louis Fippo, Roux Olivier, Guziolowski Carito, Paulevé Loïc

机构信息

LS2N, UMR CNRS 6004, Ecole Centrale de Nantes, Nantes, France.

Laboratoire d'Informatique de Paris Nord (LIPN), UMR 7030, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.

出版信息

Algorithms Mol Biol. 2017 Jul 20;12:19. doi: 10.1186/s13015-017-0110-3. eCollection 2017.

Abstract

BACKGROUND

Numerous cellular differentiation processes can be captured using discrete qualitative models of biological regulatory networks. These models describe the temporal evolution of the state of the network subject to different competing transitions, potentially leading the system to different attractors. This paper focusses on the formal identification of states and transitions that are crucial for preserving or pre-empting the reachability of a given behaviour.

METHODS

In the context of non-deterministic automata networks, we propose a static identification of so-called bifurcations, i.e., transitions after which a given goal is no longer reachable. Such transitions are naturally good candidates for controlling the occurrence of the goal, notably by modulating their propensity. Our method combines Answer-Set Programming with static analysis of reachability properties to provide an under-approximation of all the existing bifurcations.

RESULTS

We illustrate our discrete bifurcation analysis on several models of biological systems, for which we identify transitions which impact the reachability of given long-term behaviour. In particular, we apply our implementation on a regulatory network among hundreds of biological species, supporting the scalability of our approach.

CONCLUSIONS

Our method allows a formal and scalable identification of transitions which are responsible for the lost of capability to reach a given state. It can be applied to any asynchronous automata networks, which encompass Boolean and multi-valued models. An implementation is provided as part of the Pint software, available at http://loicpauleve.name/pint.

摘要

背景

使用生物调控网络的离散定性模型可以捕捉众多细胞分化过程。这些模型描述了网络状态在不同竞争转换下的时间演化,可能会使系统趋向于不同的吸引子。本文聚焦于对对于保持或预先阻止给定行为可达性至关重要的状态和转换进行形式化识别。

方法

在非确定性自动机网络的背景下,我们提出对所谓的分岔进行静态识别,即给定目标不再可达的转换。此类转换自然是控制目标出现的良好候选对象,特别是通过调节它们的倾向。我们的方法将回答集编程与可达性属性的静态分析相结合,以提供对所有现有分岔的欠近似。

结果

我们在几个生物系统模型上展示了我们的离散分岔分析,为此我们识别了影响给定长期行为可达性的转换。特别是,我们将我们的实现应用于数百个生物物种之间的调控网络,证明了我们方法的可扩展性。

结论

我们的方法允许对导致失去到达给定状态能力的转换进行形式化且可扩展的识别。它可以应用于任何异步自动机网络,包括布尔模型和多值模型。作为Pint软件的一部分提供了一个实现,可在http://loicpauleve.name/pint获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f44/5520421/120b846a4377/13015_2017_110_Fig1_HTML.jpg

相似文献

1
Identification of bifurcation transitions in biological regulatory networks using Answer-Set Programming.
Algorithms Mol Biol. 2017 Jul 20;12:19. doi: 10.1186/s13015-017-0110-3. eCollection 2017.
2
Reduction of Qualitative Models of Biological Networks for Transient Dynamics Analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1167-1179. doi: 10.1109/TCBB.2017.2749225. Epub 2017 Sep 6.
3
ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks.
Algorithms Mol Biol. 2017 Aug 15;12:20. doi: 10.1186/s13015-017-0111-2. eCollection 2017.
4
Estimating Attractor Reachability in Asynchronous Logical Models.
Front Physiol. 2018 Sep 7;9:1161. doi: 10.3389/fphys.2018.01161. eCollection 2018.
6
Exploring attractor bifurcations in Boolean networks.
BMC Bioinformatics. 2022 May 11;23(1):173. doi: 10.1186/s12859-022-04708-9.
7
Pinning Controller Design for Set Reachability of State-Dependent Impulsive Boolean Networks.
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):10838-10850. doi: 10.1109/TNNLS.2022.3171576. Epub 2023 Nov 30.
8
An FVS-Based Approach to Attractor Detection in Asynchronous Random Boolean Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):806-818. doi: 10.1109/TCBB.2020.3028862. Epub 2022 Apr 1.
9
Qualitative dynamics semantics for SBGN process description.
BMC Syst Biol. 2016 Jun 16;10(1):42. doi: 10.1186/s12918-016-0285-0.
10
Repairing Boolean logical models from time-series data using Answer Set Programming.
Algorithms Mol Biol. 2019 Mar 25;14:9. doi: 10.1186/s13015-019-0145-8. eCollection 2019.

引用本文的文献

1
ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks.
Algorithms Mol Biol. 2017 Aug 15;12:20. doi: 10.1186/s13015-017-0111-2. eCollection 2017.

本文引用的文献

1
Predicting genetic interactions from Boolean models of biological networks.
Integr Biol (Camb). 2015 Aug;7(8):921-9. doi: 10.1039/c5ib00029g. Epub 2015 May 11.
2
Model checking to assess T-helper cell plasticity.
Front Bioeng Biotechnol. 2015 Jan 28;2:86. doi: 10.3389/fbioe.2014.00086. eCollection 2014.
5
Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
BMC Syst Biol. 2012 Aug 29;6:116. doi: 10.1186/1752-0509-6-116.
6
State-time spectrum of signal transduction logic models.
Phys Biol. 2012 Aug;9(4):045003. doi: 10.1088/1478-3975/9/4/045003. Epub 2012 Aug 7.
7
Computing combinatorial intervention strategies and failure modes in signaling networks.
J Comput Biol. 2010 Jan;17(1):39-53. doi: 10.1089/cmb.2009.0121.
9
Modes and cuts in metabolic networks: complexity and algorithms.
Biosystems. 2009 Jan;95(1):51-60. doi: 10.1016/j.biosystems.2008.06.015. Epub 2008 Aug 3.
10
Minimal cut sets in biochemical reaction networks.
Bioinformatics. 2004 Jan 22;20(2):226-34. doi: 10.1093/bioinformatics/btg395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验