Faculty of Informatics, Masaryk University, Brno, Czechia.
BMC Bioinformatics. 2022 May 11;23(1):173. doi: 10.1186/s12859-022-04708-9.
Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors-subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks.
In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method's applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus.
The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system's stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
布尔网络(BN)为各种复杂的生化现象提供了一种有效的建模形式。它们的长期行为由吸引子表示——BN 最终收敛到的状态空间的子集。这些吸引子通常与不同的生物学表型相关联。根据各种逻辑参数,吸引子的结构和质量可能会发生重大变化,这被称为分叉。我们提出了一种分析异步参数化布尔网络分叉的方法。
在本文中,我们提出了一种计算框架,采用先进的符号图算法,可以分析具有数百个布尔变量的大型网络。为了可视化此分析的结果,我们开发了一种基于决策树的新颖交互表示技术,使我们能够快速发现对吸引子景观变化至关重要的参数。总的来说,该方法在我们的工具 AEON 中实现。我们在一个描述 1 型干扰素和相关分子与 SARS-COV-2 病毒相互作用的复杂人类细胞信号网络上评估了该方法的适用性。特别是,该分析侧重于解释最近提出的药物分子 GRL0617 对病毒复制的潜在抑制作用。
所提出的方法为分叉分析的概念创建了一个工作类比,该概念广泛用于动力学建模,以揭示参数对系统稳定性的影响。我们的工具的一个重要特点是它能够快速处理具有相对大量未知信息的大规模网络。案例研究中的结果与最近的生物学发现一致。