Suppr超能文献

使用局部线性模型量化随时间变化的细胞分泌物。

Quantifying time-varying cellular secretions with local linear models.

作者信息

Byers Jeff M, Christodoulides Joseph A, Delehanty James B, Raghu Deepa, Raphael Marc P

机构信息

Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375-5320.

出版信息

Heliyon. 2017 Jul 10;3(7):e00340. doi: 10.1016/j.heliyon.2017.e00340. eCollection 2017 Jul.

Abstract

Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.

摘要

细胞外蛋白质浓度和梯度引发了广泛的细胞反应,如细胞运动、生长、增殖和死亡。理解细胞间通讯需要这些分泌因子的时空知识及其与细胞表型的因果关系。能够实时检测细胞分泌物的技术越来越普遍,但仍缺乏可从这些测量中量化浓度的通用数据分析方法。在此,我们引入一种概率方法,其中应用局部线性模型和质量作用定律,从基于亲和力的生物传感器数据中获取随时间变化的分泌浓度。我们首先使用包含静态和随时间变化浓度曲线的模拟数据突出该方法的一般特征。接下来,我们应用该技术确定使用纳米等离子体生物传感器检测到的9E10杂交瘤细胞分泌抗体的浓度。观察到广泛的时间依赖性浓度:从细胞表面附近230 pM的稳态分泌到几分钟内高达56 nM然后消散的大瞬态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a09/5506887/7d592c0134a1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验