Suppr超能文献

在线自杀监测论坛上有用评论的分类

Classification of Helpful Comments on Online Suicide Watch Forums.

作者信息

Kavuluru Ramakanth, Williams Amanda G, Ramos-Morales María, Haye Laura, Holaday Tara, Cerel Julie

机构信息

Div. of Biomedical Informatics University of Kentucky Lexington, Kentucky.

Psychological Sciences Dept. Western Kentucky University Bowling Green, Kentucky.

出版信息

ACM BCB. 2016 Oct;2016:32-40. doi: 10.1145/2975167.2975170.

Abstract

Among social media websites, Reddit has emerged as a widely used online message board for focused mental health topics including depression, addiction, and suicide watch (SW). In particular, the SW community/subreddit has nearly 40,000 subscribers and 13 human moderators who monitor for abusive comments among other things. Given comments on posts from users expressing suicidal thoughts can be written from any part of the world at any time, moderating in a timely manner can be tedious. Furthermore, Reddit's default comment ranking does not involve aspects that relate to the "helpfulness" of a comment from a suicide prevention (SP) perspective. Being able to automatically identify and score helpful comments from such a perspective can assist moderators, help SW posters to have immediate feedback on the SP relevance of a comment, and also provide insights to SP researchers for dealing with online aspects of SP. In this paper, we report what we believe is the first effort in automatic identification of helpful comments on online posts in SW forums with the SW subreddit as the use-case. We use a dataset of 3000 real SW comments and obtain SP researcher judgments regarding their helpfulness in the contexts of the corresponding original posts. We conduct supervised learning experiments with content based features including -grams, word psychometric scores, and discourse relation graphs and report encouraging -scores (≈ 80 - 90%) for the helpful comment classes. Our results indicate that machine learning approaches can offer complementary moderating functionality for SW posts. Furthermore, we realize assessing the helpfulness of comments on mental health related online posts is a nuanced topic and needs further attention from the SP research community.

摘要

在社交媒体网站中,Reddit已成为一个广泛使用的在线留言板,用于讨论包括抑郁症、成瘾和自杀观察(SW)在内的重点心理健康话题。特别是,SW社区/子版块有近40000名订阅者和13名人工版主,他们负责监控辱骂性评论等内容。鉴于来自表达自杀想法的用户对帖子的评论可能在任何时间从世界任何地方发出,及时进行管理可能会很繁琐。此外,Reddit的默认评论排名并不涉及从自杀预防(SP)角度来看与评论“有用性”相关的方面。从这样的角度能够自动识别并对有用评论进行评分,可以帮助版主,帮助SW帖子发布者立即获得关于评论与SP相关性的反馈,还能为SP研究人员处理SP的在线方面提供见解。在本文中,我们报告了我们认为是以SW子版块为用例对SW论坛在线帖子中的有用评论进行自动识别的首次尝试。我们使用了一个包含3000条真实SW评论的数据集,并获得了SP研究人员对它们在相应原始帖子背景下有用性的判断。我们使用基于内容的特征进行监督学习实验,这些特征包括词元、单词心理测量分数和话语关系图,并报告了有用评论类别的令人鼓舞的分数(约80 - 90%)。我们的结果表明,机器学习方法可以为SW帖子提供补充性的管理功能。此外,我们认识到评估与心理健康相关的在线帖子评论的有用性是一个微妙的话题,需要SP研究界进一步关注。

相似文献

引用本文的文献

1
Surveillance of communicable diseases using social media: A systematic review.利用社交媒体进行传染病监测:系统评价。
PLoS One. 2023 Feb 24;18(2):e0282101. doi: 10.1371/journal.pone.0282101. eCollection 2023.

本文引用的文献

6
Utilizing social media data for pharmacovigilance: A review.利用社交媒体数据进行药物警戒:综述
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.
10
Predicting national suicide numbers with social media data.利用社交媒体数据预测全国自杀人数。
PLoS One. 2013 Apr 22;8(4):e61809. doi: 10.1371/journal.pone.0061809. Print 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验