Suppr超能文献

利用社交媒体数据预测全国自杀人数。

Predicting national suicide numbers with social media data.

机构信息

Samsung Biomedical Research Institute, Seoul, Korea.

出版信息

PLoS One. 2013 Apr 22;8(4):e61809. doi: 10.1371/journal.pone.0061809. Print 2013.

Abstract

Suicide is not only an individual phenomenon, but it is also influenced by social and environmental factors. With the high suicide rate and the abundance of social media data in South Korea, we have studied the potential of this new medium for predicting completed suicide at the population level. We tested two social media variables (suicide-related and dysphoria-related weblog entries) along with classical social, economic and meteorological variables as predictors of suicide over 3 years (2008 through 2010). Both social media variables were powerfully associated with suicide frequency. The suicide variable displayed high variability and was reactive to celebrity suicide events, while the dysphoria variable showed longer secular trends, with lower variability. We interpret these as reflections of social affect and social mood, respectively. In the final multivariate model, the two social media variables, especially the dysphoria variable, displaced two classical economic predictors - consumer price index and unemployment rate. The prediction model developed with the 2-year training data set (2008 through 2009) was validated in the data for 2010 and was robust in a sensitivity analysis controlling for celebrity suicide effects. These results indicate that social media data may be of value in national suicide forecasting and prevention.

摘要

自杀不仅是一个个体现象,还受到社会和环境因素的影响。鉴于韩国的高自杀率和丰富的社交媒体数据,我们研究了这种新媒体在预测人群层面上自杀的可能性。我们测试了两个社交媒体变量(与自杀相关和与抑郁相关的博客条目)以及经典的社会、经济和气象变量,作为对自杀的预测指标,研究时间跨度为 3 年(2008 年至 2010 年)。两个社交媒体变量都与自杀频率有很强的关联。自杀变量显示出高度的可变性,对名人自杀事件有反应,而抑郁变量则显示出更长的长期趋势,变化较小。我们将这些分别解释为社会情感和社会情绪的反映。在最终的多变量模型中,两个社交媒体变量,特别是抑郁变量,取代了两个经典的经济预测指标——消费者价格指数和失业率。使用 2 年的训练数据集(2008 年至 2009 年)开发的预测模型在 2010 年的数据中进行了验证,在控制名人自杀效应的敏感性分析中也是稳健的。这些结果表明,社交媒体数据可能对国家自杀预测和预防有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e18d/3632511/1a8515bfc14c/pone.0061809.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验