School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6480-E6489. doi: 10.1073/pnas.1701868114. Epub 2017 Jul 24.
MyD88 adaptor-like (MAL) is a critical protein in innate immunity, involved in signaling by several Toll-like receptors (TLRs), key pattern recognition receptors (PRRs). Crystal structures of MAL revealed a nontypical Toll/interleukin-1 receptor (TIR)-domain fold stabilized by two disulfide bridges. We therefore undertook a structural and functional analysis of the role of reactive cysteine residues in the protein. Under reducing conditions, the cysteines do not form disulfides, but under oxidizing conditions they are highly amenable to modification. The solution structure of the reduced form of the MAL TIR domain, determined by NMR spectroscopy, reveals a remarkable structural rearrangement compared with the disulfide-bonded structure, which includes the relocation of a β-strand and repositioning of the functionally important "BB-loop" region to a location more typical for TIR domains. Redox measurements by NMR further reveal that C91 has the highest redox potential of all cysteines in MAL. Indeed, mass spectrometry revealed that C91 undergoes glutathionylation in macrophages activated with the TLR4 ligand lipopolysaccharide (LPS). The C91A mutation limits MAL glutathionylation and acts as a dominant negative, blocking the interaction of MAL with its downstream target MyD88. The H92P mutation mimics the dominant-negative effects of the C91A mutation, presumably by preventing C91 glutathionylation. The MAL C91A and H92P mutants also display diminished degradation and interaction with interleukin-1 receptor-associated kinase 4 (IRAK4). We conclude that in the cell, MAL is not disulfide-bonded and requires glutathionylation of C91 for signaling.
MyD88 衔接蛋白样(MAL)是先天免疫中的关键蛋白,参与几种 Toll 样受体(TLR)、关键模式识别受体(PRR)的信号转导。MAL 的晶体结构揭示了一种非典型的 Toll/白细胞介素-1 受体(TIR)结构域折叠,由两条二硫键稳定。因此,我们进行了 MAL 中反应性半胱氨酸残基在蛋白质中的作用的结构和功能分析。在还原条件下,半胱氨酸不会形成二硫键,但在氧化条件下,它们很容易被修饰。通过 NMR 光谱学确定的 MAL TIR 结构域还原形式的溶液结构与二硫键结合结构相比发生了显著的结构重排,其中包括β-链的重定位和功能重要的“BB-环”区域的重新定位到更典型的 TIR 结构域的位置。NMR 还原测量进一步表明,MAL 中的所有半胱氨酸中,C91 的氧化还原电位最高。事实上,质谱分析表明,在巨噬细胞中用 TLR4 配体脂多糖(LPS)激活时,C91 会发生谷胱甘肽化。C91A 突变限制了 MAL 的谷胱甘肽化作用,并作为显性负性突变,阻断了 MAL 与其下游靶标 MyD88 的相互作用。H92P 突变模拟了 C91A 突变的显性负性效应,可能是通过阻止 C91 的谷胱甘肽化。MAL 的 C91A 和 H92P 突变体也显示出降解和与白细胞介素-1 受体相关激酶 4(IRAK4)相互作用的减少。我们得出结论,在细胞中,MAL 不是二硫键结合的,并且需要 C91 的谷胱甘肽化才能进行信号转导。