Suppr超能文献

化学测量不确定度的严格评估:使用检测器响应因子校准的液相色谱分析方法

Rigorous evaluation of chemical measurement uncertainty: Liquid chromatographic analysis methods using detector response factor calibration.

作者信息

Toman Blaza, Nelson Michael A, Bedner Mary

机构信息

National Institute of Standards and Technology, Gaithersburg, MD, USA.

出版信息

Metrologia. 2017 Jun;54(3). doi: 10.1088/1681-7575/aa6404. Epub 2017 Apr 19.

Abstract

Chemical measurement methods are designed to promote accurate knowledge of a measurand or system. As such, these methods often allow elicitation of latent sources of variability and correlation in experimental data. They typically implement measurement equations that support quantification of effects associated with calibration standards and other known or observed parametric variables. Additionally, multiple samples and calibrants are usually analyzed to assess accuracy of the measurement procedure and repeatability by the analyst. Thus, a realistic assessment of uncertainty for most chemical measurement methods is not purely bottom-up (based on the measurement equation) or top-down (based on the experimental design), but inherently contains elements of both. Confidence in results must be rigorously evaluated for the sources of variability in all of the bottom-up and top-down elements. This type of analysis presents unique challenges due to various statistical correlations among the outputs of measurement equations. One approach is to use a Bayesian hierarchical (BH) model which is intrinsically rigorous, thus making it a straightforward method for use with complex experimental designs, particularly when correlations among data are numerous and difficult to elucidate or explicitly quantify. In simpler cases, careful analysis using GUM Supplement 1 (MC) methods augmented with random effects meta analysis yields similar results to a full BH model analysis. In this article we describe both approaches to rigorous uncertainty evaluation using as examples measurements of 25-hydroxyvitamin D in solution reference materials via liquid chromatography with UV absorbance detection (LC-UV) and liquid chromatography mass spectrometric detection using isotope dilution (LC-IDMS).

摘要

化学测量方法旨在促进对被测量物或系统的准确认知。因此,这些方法常常能够揭示实验数据中潜在的变异性来源和相关性。它们通常会实施测量方程,以支持对与校准标准及其他已知或观测到的参数变量相关的效应进行量化。此外,通常会分析多个样本和校准物,以评估测量程序的准确性以及分析人员的可重复性。所以,对于大多数化学测量方法而言,不确定度的实际评估并非纯粹自下而上(基于测量方程)或自上而下(基于实验设计),而是本质上包含了两者的要素。必须针对所有自下而上和自上而下要素中的变异性来源,严格评估对结果的置信度。由于测量方程输出之间存在各种统计相关性,这种类型的分析带来了独特的挑战。一种方法是使用贝叶斯层次(BH)模型,该模型本质上是严谨的,因此使其成为适用于复杂实验设计的直接方法,特别是当数据之间的相关性众多且难以阐明或明确量化时。在较简单的情况下,使用GUM补充1(MC)方法并辅以随机效应荟萃分析进行仔细分析,会产生与完整BH模型分析相似的结果。在本文中,我们以通过液相色谱 - 紫外吸光度检测(LC - UV)和使用同位素稀释的液相色谱质谱检测(LC - IDMS)对溶液标准物质中的25 - 羟基维生素D进行测量为例,描述了两种严格评估不确定度的方法。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验