Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal.
Departamento de Informática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
Bull Math Biol. 2017 Sep;79(9):2068-2087. doi: 10.1007/s11538-017-0320-3. Epub 2017 Jul 24.
Humans are often colonized by polymorphic bacteria such as Streptococcus pneumoniae, Bordetella pertussis, Staphylococcus Aureus, and Haemophilus influenzae. Two co-colonizing pathogen clones may interact with each other upon host entry and during within-host dynamics, ranging from competition to facilitation. Here we examine the significance of these exploitation strategies for bacterial spread and persistence in host populations. We model SIS epidemiological dynamics to capture the global behavior of such multi-strain systems, focusing on different parameters of single and dual colonization. We analyze the impact of heterogeneity in clearance and transmission rates of single and dual colonization and find the criteria under which these asymmetries enhance endemic persistence. We obtain a backward bifurcation near [Formula: see text] if the reproductive value of the parasite in dually infected hosts is sufficiently higher than that in singly infected ones. In such cases, the parasite is able to persist even in sub-threshold conditions, and reducing the basic reproduction number below 1 would be insufficient for elimination. The fitness superiority in co-colonized hosts can be attained by lowering net parasite clearance rate ([Formula: see text]), by increasing transmission rate ([Formula: see text]), or both, and coupling between these traits critically constrains opportunities of pathogen survival in the [Formula: see text] regime. Finally, using an adaptive dynamics approach, we verify that despite their importance for sub-threshold endemicity, traits expressed exclusively in coinfection should generally evolve independently of single infection traits. In particular, for [Formula: see text] a saturating parabolic or hyperbolic function of [Formula: see text], co-colonization traits evolve to an intermediate optimum (evolutionarily stable strategy, ESS), determined only by host lifespan and the trade-off parameters linking [Formula: see text] and [Formula: see text]. Our study invites more empirical attention to the dynamics and evolution of parasite life-history traits expressed exclusively in coinfection.
人类经常被多种形态的细菌定植,如肺炎链球菌、百日咳博德特氏菌、金黄色葡萄球菌和流感嗜血杆菌。两个同时定植的病原体克隆在进入宿主和在宿主体内动态变化过程中可能会相互作用,从竞争到促进。在这里,我们研究了这些利用策略对细菌在宿主群体中的传播和持久性的意义。我们建立 SIS 流行病学模型来捕捉多菌株系统的全局行为,重点关注单定植和双定植的不同参数。我们分析了单定植和双定植的清除率和传播率异质性的影响,并发现了这些不对称性增强地方病持续存在的条件。如果寄生虫在双重感染宿主中的生殖值足够高于单一感染宿主,我们会在接近[Formula: see text]时获得反向分岔。在这种情况下,寄生虫即使在亚阈值条件下也能持续存在,并且将基本繁殖数降低到 1 以下不足以消除。在共同定植的宿主中获得适应性优势可以通过降低净寄生虫清除率([Formula: see text])、增加传播率([Formula: see text])或两者兼而有之来实现,而这些特征之间的耦合对病原体在[Formula: see text]机制下的生存机会具有关键限制作用。最后,我们使用适应动力学方法验证了,尽管它们对亚阈值地方病很重要,但仅在共同感染中表达的特征通常会独立于单感染特征进化。特别是对于[Formula: see text],[Formula: see text]是[Formula: see text]的饱和抛物线或双曲线函数,共同定植特征进化到一个中间最优值(进化稳定策略,ESS),仅由宿主寿命和将[Formula: see text]和[Formula: see text]联系起来的权衡参数决定。我们的研究邀请更多的经验关注仅在共同感染中表达的寄生虫生活史特征的动态和进化。