School of Mathematical Science, Huaiyin Normal University, Huaian, 223300, People's Republic of China.
Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
Bull Math Biol. 2019 Jul;81(7):2596-2624. doi: 10.1007/s11538-019-00620-1. Epub 2019 Jun 3.
In this paper, we formulate a new [Formula: see text] infection model in a two-sex mosquito population with stage structure. Some key factors of [Formula: see text] infection, including cytoplasmic incompatibility (CI), male killing (MK) effect, maternal transmission, fecundity cost due to fitness effect and different mortality rates for infected individuals, are captured. Dynamical analysis has been carried out, and the basic reproduction number [Formula: see text] for [Formula: see text] infection has been calculated. Our analysis shows that [Formula: see text] can establish in a mosquito population if [Formula: see text] is greater than unity. If [Formula: see text] is less than unity, [Formula: see text] establishment still can be achieved if backward bifurcation occurs. Under this circumstance, the initial values lying in the basin of attraction of the stable [Formula: see text]-established equilibrium are essential to guarantee [Formula: see text] establishment. In particular, the method to find the basin of attraction and evaluate the threshold initial values is given. Besides, according to a comparison of different releasing strategies, it is shown that, from the perspective of economy and disease control, keeping the number of infected female mosquitoes to a necessary minimum by relying on higher number of male mosquitoes released is a desirable strategy. Moreover, global and local sensitivity analysis and numerical simulation have been performed to explore the impact of model parameters to the success of population establishment. Our results suggest that low levels of MK effect and fitness costs as well as high levels of CI and maternal inheritance are in favor of [Formula: see text] establishment. Moreover, not considering MK effect and incomplete CI effect may result in the underestimation of the number of infected mosquitoes needed to be released.
在本文中,我们构建了一个具有阶段结构的两性别蚊虫种群中的新型[公式:见正文]感染模型。模型中捕获了[公式:见正文]感染的一些关键因素,包括细胞质不兼容(CI)、雄性致死(MK)效应、母体传递、由于适合度效应而导致的繁殖力成本以及感染个体的不同死亡率。我们进行了动力学分析,并计算了[公式:见正文]感染的基本繁殖数[Formula: see text]。我们的分析表明,如果[Formula: see text]大于 1,则[公式:见正文]可以在蚊虫种群中建立。如果[Formula: see text]小于 1,即使发生反向分歧,[公式:见正文]建立仍然可以实现。在这种情况下,保证[Formula: see text]建立的关键是位于稳定[Formula: see text]-建立平衡点吸引域中的初始值。特别是,给出了寻找吸引域和评估阈值初始值的方法。此外,根据不同释放策略的比较,结果表明,从经济和疾病控制的角度来看,通过释放更多的雄性蚊虫来将感染雌性蚊虫的数量保持在必要的最低水平是一种理想的策略。此外,进行了全局和局部敏感性分析以及数值模拟,以探索模型参数对种群建立成功的影响。我们的研究结果表明,MK 效应和适合度成本较低,CI 和母体遗传率较高,有利于[公式:见正文]建立。此外,不考虑 MK 效应和不完全 CI 效应可能会导致低估需要释放的感染蚊虫数量。