Luo Xi, Rosenfeld Jill A, Yamamoto Shinya, Harel Tamar, Zuo Zhongyuan, Hall Melissa, Wierenga Klaas J, Pastore Matthew T, Bartholomew Dennis, Delgado Mauricio R, Rotenberg Joshua, Lewis Richard Alan, Emrick Lisa, Bacino Carlos A, Eldomery Mohammad K, Coban Akdemir Zeynep, Xia Fan, Yang Yaping, Lalani Seema R, Lotze Timothy, Lupski James R, Lee Brendan, Bellen Hugo J, Wangler Michael F
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America.
Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States of America.
PLoS Genet. 2017 Jul 24;13(7):e1006905. doi: 10.1371/journal.pgen.1006905. eCollection 2017 Jul.
Dominant mutations in CACNA1A, encoding the α-1A subunit of the neuronal P/Q type voltage-dependent Ca2+ channel, can cause diverse neurological phenotypes. Rare cases of markedly severe early onset developmental delay and congenital ataxia can be due to de novo CACNA1A missense alleles, with variants affecting the S4 transmembrane segments of the channel, some of which are reported to be loss-of-function. Exome sequencing in five individuals with severe early onset ataxia identified one novel variant (p.R1673P), in a girl with global developmental delay and progressive cerebellar atrophy, and a recurrent, de novo p.R1664Q variant, in four individuals with global developmental delay, hypotonia, and ophthalmologic abnormalities. Given the severity of these phenotypes we explored their functional impact in Drosophila. We previously generated null and partial loss-of-function alleles of cac, the homolog of CACNA1A in Drosophila. Here, we created transgenic wild type and mutant genomic rescue constructs with the two noted conserved point mutations. The p.R1673P mutant failed to rescue cac lethality, displayed a gain-of-function phenotype in electroretinograms (ERG) recorded from mutant clones, and evolved a neurodegenerative phenotype in aging flies, based on ERGs and transmission electron microscopy. In contrast, the p.R1664Q variant exhibited loss of function and failed to develop a neurodegenerative phenotype. Hence, the novel R1673P allele produces neurodegenerative phenotypes in flies and human, likely due to a toxic gain of function.
编码神经元P/Q型电压依赖性Ca2+通道α-1A亚基的CACNA1A基因的显性突变可导致多种神经学表型。罕见的明显严重的早发性发育迟缓及先天性共济失调病例可能归因于新生的CACNA1A错义等位基因,其变异影响通道的S4跨膜片段,其中一些据报道为功能丧失型。对五名严重早发性共济失调患者进行外显子组测序,在一名患有全面发育迟缓及进行性小脑萎缩的女孩中鉴定出一个新变异(p.R1673P),在四名患有全面发育迟缓、肌张力减退及眼科异常的患者中鉴定出一个反复出现的新生p.R1664Q变异。鉴于这些表型的严重性,我们在果蝇中探究了它们的功能影响。我们之前构建了果蝇中CACNA1A的同源基因cac的无效及部分功能丧失等位基因。在此,我们构建了带有上述两个已注明的保守点突变的转基因野生型及突变基因组拯救构建体。p.R1673P突变体未能拯救cac致死性,在从突变克隆记录的视网膜电图(ERG)中表现出功能获得型表型,并且基于ERG及透射电子显微镜观察,在老龄果蝇中出现神经退行性表型。相比之下,p.R1664Q变异表现出功能丧失,且未出现神经退行性表型。因此,新的R1673P等位基因在果蝇及人类中产生神经退行性表型,可能是由于功能获得性毒性作用。