Department of Bioengineering, University of Texas at Dallas , 800 W. Campbell Rd., Richardson, Texas 75083, United States.
Langmuir. 2017 Aug 8;33(31):7591-7599. doi: 10.1021/acs.langmuir.7b00718. Epub 2017 Jul 25.
The effect of incorporating different types of carbon nanotubes into composite films of a redox polymer (FcMe-C-LPEI) and glucose oxidase (GOX) was investigated. The composite films were constructed by first forming a high-surface area network film of either single-walled carbon nanotubes (SWNTs) or multiwalled carbon nanotubes (MWNTs) on a glassy carbon electrode (GCE) by solution casting of a suspension of Triton-X-100 dispersed SWNTs. Next a glucose responsive redox hydrogel was formed on top of the nanotube-modified electrode by cross-linking FcMe-C-LPEI with glucose oxidase via ethylene glycol diglycidyl ether (EGDGE). Electrochemical and enzymatic measurements showed that composite films made with (7,6) SWNTs produced a higher response (3.3 mA/cm) to glucose than films made with (6,5) SWNTs (1.8 mA/cm) or MWNTs (1.2 mA/cm) or films made without SWNTs (0.7 mA/cm). We also show that the response of the composite films could be systematically varied by fabricating SWNT films with different weight ratios of (7,6) and (6,5) SWNTs. Optimization of the (7,6) SWNTs loading and the redox polymer-enzyme film produced a glucose response of 11.2 mA/cm. Combining the optimized glucose films with a platinum oxygen breathing cathode into a biofuel cell produced a maximum power density output of 343 μW/cm.
研究了将不同类型的碳纳米管纳入氧化还原聚合物(FcMe-C-LPEI)和葡萄糖氧化酶(GOX)复合膜中的效果。通过将 Triton-X-100 分散的单壁碳纳米管(SWNTs)悬浮液浇铸在玻璃碳电极(GCE)上,首先在玻璃碳电极上形成具有高表面积网络的单壁碳纳米管(SWNTs)或多壁碳纳米管(MWNTs)的复合膜。接下来,通过乙二醇二缩水甘油醚(EGDGE)将 FcMe-C-LPEI 与葡萄糖氧化酶交联,在纳米管修饰电极的顶部形成葡萄糖响应的氧化还原水凝胶。电化学和酶学测量表明,与(6,5)SWNTs(1.8 mA/cm)或 MWNTs(1.2 mA/cm)或无 SWNTs(0.7 mA/cm)制成的薄膜相比,用(7,6)SWNTs 制成的复合薄膜对葡萄糖的响应更高(3.3 mA/cm)。我们还表明,可以通过用不同重量比的(7,6)和(6,5)SWNTs 制造 SWNT 薄膜来系统地改变复合薄膜的响应。优化 SWNT 负载和氧化还原聚合物-酶膜,可使葡萄糖响应达到 11.2 mA/cm。将优化的葡萄糖薄膜与铂氧气呼吸阴极结合到生物燃料电池中,可产生 343 μW/cm 的最大功率密度输出。