Miller Marion, Chen Aichun, Gobert Vanessa, Augé Benoit, Beau Mathilde, Burlet-Schiltz Odile, Haenlin Marc, Waltzer Lucas
Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.
PLoS Genet. 2017 Jul 25;13(7):e1006932. doi: 10.1371/journal.pgen.1006932. eCollection 2017 Jul.
A tight regulation of transcription factor activity is critical for proper development. For instance, modifications of RUNX transcription factors dosage are associated with several diseases, including hematopoietic malignancies. In Drosophila, Myeloid Leukemia Factor (MLF) has been shown to control blood cell development by stabilizing the RUNX transcription factor Lozenge (Lz). However, the mechanism of action of this conserved family of proteins involved in leukemia remains largely unknown. Here we further characterized MLF's mode of action in Drosophila blood cells using proteomic, transcriptomic and genetic approaches. Our results show that MLF and the Hsp40 co-chaperone family member DnaJ-1 interact through conserved domains and we demonstrate that both proteins bind and stabilize Lz in cell culture, suggesting that MLF and DnaJ-1 form a chaperone complex that directly regulates Lz activity. Importantly, dnaj-1 loss causes an increase in Lz+ blood cell number and size similarly as in mlf mutant larvae. Moreover we find that dnaj-1 genetically interacts with mlf to control Lz level and Lz+ blood cell development in vivo. In addition, we show that mlf and dnaj-1 loss alters Lz+ cell differentiation and that the increase in Lz+ blood cell number and size observed in these mutants is caused by an overactivation of the Notch signaling pathway. Finally, using different conditions to manipulate Lz activity, we show that high levels of Lz are required to repress Notch transcription and signaling. All together, our data indicate that the MLF/DnaJ-1-dependent increase in Lz level allows the repression of Notch expression and signaling to prevent aberrant blood cell development. Thus our findings establish a functional link between MLF and the co-chaperone DnaJ-1 to control RUNX transcription factor activity and Notch signaling during blood cell development in vivo.
转录因子活性的严格调控对于正常发育至关重要。例如,RUNX转录因子剂量的改变与多种疾病相关,包括造血系统恶性肿瘤。在果蝇中,髓系白血病因子(MLF)已被证明通过稳定RUNX转录因子菱形(Lz)来控制血细胞发育。然而,这个与白血病相关的保守蛋白家族的作用机制在很大程度上仍不清楚。在这里,我们使用蛋白质组学、转录组学和遗传学方法进一步表征了MLF在果蝇血细胞中的作用模式。我们的结果表明,MLF与热休克蛋白40共伴侣家族成员DnaJ-1通过保守结构域相互作用,并且我们证明这两种蛋白在细胞培养中结合并稳定Lz,这表明MLF和DnaJ-1形成了一个直接调节Lz活性的伴侣复合体。重要的是,dnaj-1缺失导致Lz+血细胞数量和大小增加,这与mlf突变幼虫的情况类似。此外,我们发现dnaj-1在体内与mlf发生遗传相互作用,以控制Lz水平和Lz+血细胞发育。此外,我们表明mlf和dnaj-1缺失会改变Lz+细胞分化,并且在这些突变体中观察到的Lz+血细胞数量和大小增加是由Notch信号通路的过度激活引起的。最后,使用不同条件来操纵Lz活性,我们表明需要高水平的Lz来抑制Notch转录和信号传导。总之,我们的数据表明,MLF/DnaJ-1依赖性的Lz水平升高允许抑制Notch表达和信号传导,以防止异常血细胞发育。因此,我们的研究结果在体内血细胞发育过程中建立了MLF与共伴侣DnaJ-1之间的功能联系,以控制RUNX转录因子活性和Notch信号传导。