Suppr超能文献

施加电压对通过导电材料进行种间直接电子转移产甲烷的影响。

Effects of an applied voltage on direct interspecies electron transfer via conductive materials for methane production.

作者信息

Lee Jung-Yeol, Park Jeong-Hoon, Park Hee-Deung

机构信息

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea.

School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea; KU-KIST Green School, Graduate School of Energy and Environment, Korea University, Seoul, South Korea.

出版信息

Waste Manag. 2017 Oct;68:165-172. doi: 10.1016/j.wasman.2017.07.025. Epub 2017 Jul 23.

Abstract

Direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and methanogenic archaea via conductive materials is reported as an efficient method to produce methane in anaerobic organic waste digestion. A voltage can be applied to the conductive materials to accelerate the DIET between two groups of microorganisms to produce methane. To evaluate this hypothesis, two sets of anaerobic serum bottles with and without applied voltage were used with a pair of graphite rods as conductive materials to facilitate DIET. Initially, the methane production rate was similar between the two sets of serum bottles, and later the serum bottles with an applied voltage of 0.39V showed a 168% higher methane production rate than serum bottles without an applied voltage. In cyclic voltammograms, the characteristic redox peaks for hydrogen and acetate oxidation were identified in the serum bottles with an applied voltage. In the microbial community analyses, hydrogenotrophic methanogens (e.g. Methanobacterium) were observed to be abundant in serum bottles with an applied voltage, while methanogens utilizing carbon dioxide (e.g., Methanosaeta and Methanosarcina) were dominant in serum bottles without an applied voltage. Taken together, the applied voltage on conductive materials might not be effective to promote DIET in methane production. Instead, it appeared to generate a condition for hydrogenotrophic methanogenesis.

摘要

据报道,在厌氧有机废物消化过程中,产电细菌和产甲烷古菌通过导电材料进行的直接种间电子转移(DIET)是一种高效的甲烷生产方法。可以向导电材料施加电压,以加速两组微生物之间的DIET来产生甲烷。为了评估这一假设,使用了两组分别施加和未施加电压的厌氧血清瓶,并以一对石墨棒作为导电材料来促进DIET。最初,两组血清瓶的甲烷产生率相似,后来施加0.39V电压的血清瓶的甲烷产生率比未施加电压的血清瓶高出168%。在循环伏安图中,在施加电压的血清瓶中鉴定出了氢气和乙酸氧化的特征氧化还原峰。在微生物群落分析中,观察到在施加电压的血清瓶中,氢营养型产甲烷菌(如甲烷杆菌属)丰富,而在未施加电压的血清瓶中,利用二氧化碳的产甲烷菌(如甲烷鬃菌属和甲烷八叠球菌属)占主导地位。综上所述,在导电材料上施加电压可能对促进甲烷生产中的DIET无效。相反,它似乎为氢营养型甲烷生成创造了条件。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验