Guo Shaohua, Li Qi, Liu Pan, Chen Mingwei, Zhou Haoshen
Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8568, Japan.
Nat Commun. 2017 Jul 26;8(1):135. doi: 10.1038/s41467-017-00157-8.
Sodium-ion batteries are strategically pivotal to achieving large-scale energy storage. Layered oxides, especially manganese-based oxides, are the most popular cathodes due to their high reversible capacity and use of earth-abundant elements. However, less noticed is the fact that the interface of layered cathodes always suffers from atmospheric and electrochemical corrosion, leading to severely diminished electrochemical properties. Herein, we demonstrate an environmentally stable interface via the superficial concentration of titanium, which not only overcomes the above limitations, but also presents unique surface chemical/electrochemical properties. The results show that the atomic-scale interface is composed of spinel-like titanium (III) oxides, enhancing the structural/electrochemical stability and electronic/ionic conductivity. Consequently, the interface-engineered electrode shows excellent cycling performance among all layered manganese-based cathodes, as well as high-energy density. Our findings highlight the significance of a stable interface and, moreover, open opportunities for the design of well-tailored cathode materials for sodium storage.The interface of layered cathodes for sodium ion batteries is subject to atmospheric and electrochemical corrosions. Here, the authors demonstrate an environmentally stable interface via titanium enriched surface reconstruction in a layered manganese-based oxide.
钠离子电池对于实现大规模储能具有至关重要的战略意义。层状氧化物,尤其是锰基氧化物,因其高可逆容量以及对储量丰富元素的使用,成为最受欢迎的正极材料。然而,较少被关注的是,层状正极的界面总是遭受大气和电化学腐蚀,导致其电化学性能严重下降。在此,我们通过钛的表面富集展现了一种环境稳定的界面,这不仅克服了上述限制,还呈现出独特的表面化学/电化学性质。结果表明,原子尺度的界面由类尖晶石型的三价钛氧化物构成,增强了结构/电化学稳定性以及电子/离子传导性。因此,界面工程化的电极在所有层状锰基正极中展现出优异的循环性能以及高能量密度。我们的发现突出了稳定界面的重要性,此外,还为设计用于钠存储的定制良好的正极材料开辟了机会。钠离子电池层状正极的界面易受大气和电化学腐蚀。在此,作者们通过在层状锰基氧化物中进行富钛表面重构,展示了一种环境稳定的界面。