Gracia J
SynCat@Beijing, Synfuels China Technology Co. Ltd, Beijing, 101400, China.
Phys Chem Chem Phys. 2017 Aug 9;19(31):20451-20456. doi: 10.1039/c7cp04289b.
The technological interest of oxygen reduction and evolution reactions, ORR and OER, for the clean use and storage of energy has resulted in the discovery of multiple catalysts; and the physical and catalytic properties of the most active compositions are only comprehensible with the consideration of magnetic interactions. Spin dependent potentials via exchange interactions, spin-orbit coupling or through magneto-electric effects catalyse the oxygen electrochemistry. The best catalysts show metal sites with localized spins and electron delocalization; a correlation exists between the rate constant for charge transfer reactions and spin-dependent electron mobility. Since during the OER and ORR the number of unpaired electrons is not conserved, magnetic potentials in optimum catalysts act as selective gates to enhance the transport of local spin currents. Overall magnetic potentials can reduce the bonding properties of the, donor or acceptor, orbitals in the catalyst, and electrons more easily transfer over the conduction band. The influence of spin dependent forces is generally applicable to oxygen catalysis, and supplements the physical interactions relevant for inorganic or organic, electro or photo, artificial or natural processes.
氧还原反应(ORR)和析氧反应(OER)在能源清洁利用和存储方面的技术应用引发了人们对多种催化剂的探索;而只有考虑磁相互作用,才能理解最具活性成分的物理和催化性质。通过交换相互作用、自旋轨道耦合或磁电效应产生的自旋相关电势催化了氧电化学过程。最佳催化剂具有局域自旋和电子离域的金属位点;电荷转移反应的速率常数与自旋相关电子迁移率之间存在关联。由于在OER和ORR过程中未成对电子的数量不守恒,最佳催化剂中的磁势充当选择性门控,以增强局部自旋电流的传输。整体磁势可以降低催化剂中供体或受体轨道的键合性质,使电子更容易在导带上转移。自旋相关力的影响普遍适用于氧催化,并补充了与无机或有机、电或光、人工或自然过程相关的物理相互作用。