Huang Chih-Ying, Chen Hsin-An, Lin Wei-Xuan, Chen Kuan-Hung, Lin Yu-Chang, Wu Tai-Sing, Chang Chia-Che, Pao Chih-Wen, Chuang Wei-Tsung, Jan Jyh-Chyuan, Shao Yu-Cheng, Hiraoka Nozomu, Chiou Jau-Wern, Kuo Pai-Chia, Shiue Jessie, Vishnu S K Deepak, Sankar Raman, Cyue Zih-Wei, Pong Way-Faung, Chen Chun-Wei
International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 106319, Taiwan.
Molecular Science and Technology Program Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115201, Taiwan.
J Am Chem Soc. 2025 Apr 23;147(16):13286-13295. doi: 10.1021/jacs.4c18149. Epub 2025 Apr 12.
Manipulating the spin ordering of the oxygen evolution reaction (OER) catalysts through magnetization has recently emerged as a promising strategy to enhance performance. Despite numerous experiments elaborating on the spin magnetic effect for improved OER, the origin of this phenomenon remains largely unexplored, primarily due to the difficulty in directly distinguishing the spin states of electrocatalysts during chemical reactions at the atomic level. X-ray emission spectroscopy (XES), which provides information sensitive to the spin states of specific elements in a complex, may serve as a promising technique to differentiate the onset of OER catalytic activities from the influence of spin states. In this work, we employ the in situ XES technique, along with X-ray absorption spectroscopy (XAS), to investigate the interplay between atomic/electronic structures, spin states, and OER catalytic activities of the CoFeO (CFO) catalyst under an external magnetic field. This enhancement is due to the spin magnetic effect that facilitates spin-selective electron transfer from adsorbed OH reactants, which strongly depends on the spin configurations of the tetrahedral-() and octahedral-() sites of both Fe and Co ions. Our result contributes to a comprehensive understanding of magnetic field-assisted electrocatalysis at the atomic level and paves the way for designing highly efficient OER catalysts.
通过磁化来调控析氧反应(OER)催化剂的自旋排序,最近已成为一种提高性能的有前景的策略。尽管有大量实验阐述了自旋磁效应以改善析氧反应,但这种现象的起源在很大程度上仍未得到探索,主要是因为在化学反应过程中难以在原子水平直接区分电催化剂的自旋态。X射线发射光谱(XES)能够提供对复杂体系中特定元素自旋态敏感的信息,它可能是一种有前景的技术,用于区分析氧反应催化活性的起始与自旋态的影响。在这项工作中,我们采用原位XES技术以及X射线吸收光谱(XAS),来研究在外部磁场下CoFeO(CFO)催化剂的原子/电子结构、自旋态和析氧反应催化活性之间的相互作用。这种增强归因于自旋磁效应,它促进了从吸附的OH反应物进行自旋选择性电子转移,这强烈依赖于Fe和Co离子的四面体( )和八面体( )位点的自旋构型。我们的结果有助于在原子水平全面理解磁场辅助电催化,并为设计高效析氧反应催化剂铺平道路。