Wang Xia, Peralta Mayra, Li Xiaodong, Möllers Paul V, Zhou Dong, Merz Patrick, Burkhardt Ulrich, Borrmann Horst, Robredo Iñigo, Shekhar Chandra, Zacharias Helmut, Feng Xinliang, Felser Claudia
Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany.
Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01062, Germany.
Proc Natl Acad Sci U S A. 2025 Mar 4;122(9):e2413609122. doi: 10.1073/pnas.2413609122. Epub 2025 Feb 25.
The oxygen reduction reaction (ORR) in acidic media suffers from sluggish kinetics, primarily due to the spin-dependent electron transfer involved. The direct generation of spin-polarized electrons at catalytic surfaces remains elusive, and the underlying mechanisms are still controversial due to the lack of intrinsically chiral catalysts. To address this challenge, we investigate topological homochiral PdGa (TH PdGa) crystals with intrinsically chiral catalytic surfaces for ORR. Through spin-resolved photoemission spectroscopy and theoretical simulations, we show that both structural chirality and spin-orbit coupling are critical for inducing spin polarization at the surface of TH PdGa. As a result, TH PdGa achieves a kinetic current density over 100 times higher than the achiral PdGa (AC PdGa) at 0.85 V versus the reversible hydrogen electrode. This work underscores the pivotal role of spin polarization in enhancing acidic ORR activity and lays the groundwork for the rational design of chiral catalysts for spin-dependent catalysis.
酸性介质中的氧还原反应(ORR)动力学缓慢,主要是由于涉及自旋相关的电子转移。在催化表面直接产生自旋极化电子仍然难以实现,并且由于缺乏本征手性催化剂,其潜在机制仍存在争议。为应对这一挑战,我们研究了具有本征手性催化表面的拓扑纯手性PdGa(TH PdGa)晶体用于ORR。通过自旋分辨光电子能谱和理论模拟,我们表明结构手性和自旋轨道耦合对于在TH PdGa表面诱导自旋极化都至关重要。结果,在相对于可逆氢电极0.85 V的电位下,TH PdGa实现的动力学电流密度比非手性PdGa(AC PdGa)高100倍以上。这项工作强调了自旋极化在增强酸性ORR活性中的关键作用,并为合理设计用于自旋依赖性催化的手性催化剂奠定了基础。