Department of Biosystems Science and Engineering, ETH Zurich , 4058 Basel, Switzerland.
Institute of Biochemistry and Molecular Medicine, University of Bern , 3012 Bern, Switzerland.
ACS Nano. 2017 Aug 22;11(8):8292-8301. doi: 10.1021/acsnano.7b03456. Epub 2017 Aug 1.
To understand how membrane proteins function requires characterizing their structure, assembly, and inter- and intramolecular interactions in physiologically relevant conditions. Conventionally, such multiparametric insight is revealed by applying different biophysical methods. Here we introduce the combination of confocal microscopy, force-distance curve-based (FD-based) atomic force microscopy (AFM), and single-molecule force spectroscopy (SMFS) for the identification of native membranes and the subsequent multiparametric analysis of their membrane proteins. As a well-studied model system, we use native purple membrane from Halobacterium salinarum, whose membrane protein bacteriorhodopsin was His-tagged to bind nitrilotriacetate (NTA) ligands. First, by confocal microscopy we localize the extracellular and cytoplasmic surfaces of purple membrane. Then, we apply AFM to image single bacteriorhodopsins approaching sub-nanometer resolution. Afterwards, the binding of NTA ligands to bacteriorhodopsins is localized and quantified by FD-based AFM. Finally, we apply AFM-based SMFS to characterize the (un)folding of the membrane protein and to structurally map inter- and intramolecular interactions. The multimethodological approach is generally applicable to characterize biological membranes and membrane proteins at physiologically relevant conditions.
要了解膜蛋白的功能,需要在生理相关条件下对其结构、组装以及分子间和分子内相互作用进行表征。传统上,通过应用不同的生物物理方法可以揭示这种多参数的见解。在这里,我们介绍了共聚焦显微镜、基于力-距离曲线的原子力显微镜(AFM)和单分子力谱(SMFS)的组合,用于鉴定天然膜以及随后对其膜蛋白进行多参数分析。作为一个研究充分的模型系统,我们使用来自盐杆菌的天然紫色膜,其膜蛋白细菌视紫红质被 His 标签标记以结合氮三乙酸(NTA)配体。首先,通过共聚焦显微镜,我们定位紫色膜的细胞外表面和细胞质表面。然后,我们应用 AFM 以接近亚纳米分辨率成像单个细菌视紫红质。之后,通过基于力-距离曲线的 AFM 定位和定量 NTA 配体与细菌视紫红质的结合。最后,我们应用基于 AFM 的 SMFS 来表征膜蛋白的(解)折叠,并对分子间和分子内相互作用进行结构映射。这种多方法学方法通常适用于在生理相关条件下对生物膜和膜蛋白进行表征。