Suppr超能文献

升温速率影响厌氧泥炭分解和温室气体产生的温度敏感性。

Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.

机构信息

Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, University of Florida, Gainesville, FL, USA.

University of Maryland Center for Environmental Science Appalachian Laboratory, Frostburg, MD, USA.

出版信息

Glob Chang Biol. 2018 Jan;24(1):e259-e274. doi: 10.1111/gcb.13839. Epub 2017 Sep 1.

Abstract

Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO ) and methane (CH ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO and CH production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH -C:CO -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH and CO further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH -C:CO -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change.

摘要

湿地中厌氧碳矿化的温度敏感性在大多数气候模型中仍未得到充分体现,尤其是在占全球甲烷排放量很大比例的温暖亚热带和热带系统中。几项关于实验加热的研究记录了土壤呼吸的热驯化,涉及微生物生理学或碳利用效率(CUE)的调整,随着加热的初始 CUE 下降,随后在后期 CUE 部分恢复。可变的 CUE 意味着变暖的速度可能会影响微生物的驯化和二氧化碳(CO)和甲烷(CH)的产生速度。在这里,我们通过施加大的单步(一天内 10°C)或缓慢的斜坡(100 天内 0.1°C/天)温度升高,评估了升温速率对亚热带泥炭分解的影响。通过监测 CO 和 CH 的产生、CUE 和微生物生物量来测试热驯化的程度。在缓慢(斜坡)升温处理中,总气态 C 损失、CUE 和 MBC 更高。然而,在快速(步长)升温处理中,CH-C:CO-C 比值较高导致更大的全球变暖潜势。逐渐升温对分解的影响在顽固和营养受限的土壤中更为明显。CH 和 CO 的稳定碳同位素进一步表明,在不同的升温速率下,可能存在不同的碳处理途径。快速与缓慢升温处理的不同响应以及不同的终点可能表明存在长期后果的替代途径。将实验结果纳入有机质分解模型表明,CUE 和 CH-C:CO-C 比值的参数不确定性对长期土壤有机碳和全球变暖潜势的影响大于模型结构的不确定性,并表明特定的升温速率是理解湿地土壤对全球气候变化响应的核心。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验