Suppr超能文献

无层皮质的功能

The Functioning of a Cortex without Layers.

作者信息

Guy Julien, Staiger Jochen F

机构信息

Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-UniversityGöttingen, Germany.

DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)Göttingen, Germany.

出版信息

Front Neuroanat. 2017 Jul 12;11:54. doi: 10.3389/fnana.2017.00054. eCollection 2017.

Abstract

A major hallmark of cortical organization is the existence of a variable number of layers, i.e., sheets of neurons stacked on top of each other, in which neurons have certain commonalities. However, even for the neocortex, variable numbers of layers have been described and it is just a convention to distinguish six layers from each other. Whether cortical layers are a structural epiphenomenon caused by developmental dynamics or represent a functionally important modularization of cortical computation is still unknown. Here we present our insights from the reeler mutant mouse, a model for a developmental, "molecular lesion"-induced loss of cortical layering that could serve as ground truth of what an intact layering adds to the cortex in terms of functionality. We could demonstrate that the reeler neocortex shows no inversion of cortical layers but rather a severe disorganization that in the primary somatosensory cortex leads to the complete loss of layers. Nevertheless, the somatosensory system is well organized. When exploring an enriched environment with specific sets of whiskers, activity-dependent gene expression takes place in the corresponding modules. Precise whisker stimuli lead to the functional activation of somatotopically organized barrel columns as visualized by intrinsic signal optical imaging. Similar results were obtained in the reeler visual system. When analyzing pathways that could be responsible for preservation of tactile perception, lemniscal thalamic projections were found to be largely intact, despite the smearing of target neurons across the cortical mantle. However, with optogenetic experiments we found evidence for a mild dispersion of thalamic synapse targeting on layer IV-spiny stellate cells, together with a general weakening in thalamocortical input strength. This weakening of thalamic inputs was compensated by intracortical mechanisms involving increased recurrent excitation and/or reduced feedforward inhibition. In conclusion, a layer loss so far only led to the detection of subtle defects in sensory processing by reeler mice. This argues in favor of a view in which cortical layers are not an essential component for perception and cognition. A view also supported by recent studies in birds, which can have remarkable cognitive capacities despite the lack of a neocortex with multiple cortical layers. In conclusion, we suggest that future studies directed toward understanding cortical functions should rather focus on circuits specified by functional cell type composition than mere laminar location.

摘要

皮质组织的一个主要特征是存在数量可变的层,即相互堆叠的神经元层,其中的神经元具有某些共性。然而,即使是新皮质,其层的数量也有不同描述,将其区分为六层只是一种惯例。皮质层是由发育动力学导致的结构附带现象,还是代表皮质计算中功能上重要的模块化,目前仍不清楚。在此,我们展示了从reeler突变小鼠模型中获得的见解,该模型因发育过程中“分子损伤”导致皮质分层丧失,可作为完整分层在功能方面对皮质作用的基本依据。我们能够证明,reeler新皮质并未出现皮质层倒置,而是严重紊乱,在初级躯体感觉皮质中导致层的完全丧失。尽管如此,躯体感觉系统组织良好。当用特定的一组胡须探索丰富环境时,活动依赖的基因表达会在相应模块中发生。精确的胡须刺激会导致躯体感觉定位组织的桶状柱功能激活,这可通过内在信号光学成像观察到。在reeler视觉系统中也获得了类似结果。在分析可能负责保留触觉感知的通路时,发现丘脑薄束核投射基本完整,尽管目标神经元在皮质表面有弥散分布。然而,通过光遗传学实验,我们发现有证据表明丘脑突触靶向第IV层棘状星状细胞存在轻度弥散,同时丘脑皮质输入强度普遍减弱。丘脑输入的这种减弱通过涉及增强的反复兴奋和/或减少的前馈抑制的皮质内机制得到补偿。总之,到目前为止,层的丧失仅导致在reeler小鼠中检测到感觉处理的细微缺陷。这支持了一种观点,即皮质层不是感知和认知的必要组成部分。这一观点也得到了近期对鸟类研究的支持,尽管鸟类缺乏具有多个皮质层的新皮质,但仍具有显著的认知能力。总之,我们建议未来旨在理解皮质功能的研究应更多地关注由功能细胞类型组成所确定的回路,而不仅仅是层的位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4993/5506093/0c01b4c67fc0/fnana-11-00054-g0001.jpg

相似文献

1
The Functioning of a Cortex without Layers.
Front Neuroanat. 2017 Jul 12;11:54. doi: 10.3389/fnana.2017.00054. eCollection 2017.
2
Intracortical Network Effects Preserve Thalamocortical Input Efficacy in a Cortex Without Layers.
Cereb Cortex. 2017 Oct 1;27(10):4851-4866. doi: 10.1093/cercor/bhw281.
5
Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
J Neurophysiol. 1998 Dec;80(6):3261-71. doi: 10.1152/jn.1998.80.6.3261.
7
Persistence of Functional Sensory Maps in the Absence of Cortical Layers in the Somsatosensory Cortex of Reeler Mice.
Cereb Cortex. 2015 Sep;25(9):2517-28. doi: 10.1093/cercor/bhu052. Epub 2014 Apr 23.
10
Normal connectivity of thalamorecipient networks in barrel equivalents of the reeler cortex.
Cereb Cortex. 2023 Jun 8;33(12):7688-7701. doi: 10.1093/cercor/bhad072.

引用本文的文献

1
Neurobehavioral profile of individuals with pathogenic variants in CHD3.
Eur J Hum Genet. 2025 Aug 19. doi: 10.1038/s41431-025-01926-6.
2
Two patterns in apical dendrite extensions of projection neurons within cerebral cortex of reeler mutant mice.
Front Neuroanat. 2025 May 30;19:1560972. doi: 10.3389/fnana.2025.1560972. eCollection 2025.
3
Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease.
Nat Commun. 2025 Jan 8;16(1):482. doi: 10.1038/s41467-024-54715-y.
4
The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer's Disease.
J Alzheimers Dis. 2024;100(4):1099-1119. doi: 10.3233/JAD-240088.
6
Two distinct mechanisms of Plexin A function in Drosophila optic lobe lamination and morphogenesis.
Development. 2024 May 15;151(10). doi: 10.1242/dev.202237. Epub 2024 May 22.
7
Evolutionary origin of alpha rhythms in vertebrates.
Front Behav Neurosci. 2024 Apr 8;18:1384340. doi: 10.3389/fnbeh.2024.1384340. eCollection 2024.
8
Morphological Features of Human Dendritic Spines.
Adv Neurobiol. 2023;34:367-496. doi: 10.1007/978-3-031-36159-3_9.
9
Reelin through the years: From brain development to inflammation.
Cell Rep. 2023 Jun 27;42(6):112669. doi: 10.1016/j.celrep.2023.112669. Epub 2023 Jun 19.
10
Denervated mouse CA1 pyramidal neurons express homeostatic synaptic plasticity following entorhinal cortex lesion.
Front Mol Neurosci. 2023 Apr 12;16:1148219. doi: 10.3389/fnmol.2023.1148219. eCollection 2023.

本文引用的文献

1
Reelin-Haploinsufficiency Disrupts the Developmental Trajectory of the E/I Balance in the Prefrontal Cortex.
Front Cell Neurosci. 2017 Jan 12;10:308. doi: 10.3389/fncel.2016.00308. eCollection 2016.
2
Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex.
PLoS One. 2016 Oct 5;11(10):e0164004. doi: 10.1371/journal.pone.0164004. eCollection 2016.
3
Intracortical Network Effects Preserve Thalamocortical Input Efficacy in a Cortex Without Layers.
Cereb Cortex. 2017 Oct 1;27(10):4851-4866. doi: 10.1093/cercor/bhw281.
4
Canonical and Non-canonical Reelin Signaling.
Front Cell Neurosci. 2016 Jun 30;10:166. doi: 10.3389/fncel.2016.00166. eCollection 2016.
5
Molecular signatures of neural connectivity in the olfactory cortex.
Nat Commun. 2016 Jul 18;7:12238. doi: 10.1038/ncomms12238.
6
Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences.
Cell. 2016 Jun 16;165(7):1776-1788. doi: 10.1016/j.cell.2016.05.010. Epub 2016 May 26.
8
Reelin protects against amyloid β toxicity in vivo.
Sci Signal. 2015 Jul 7;8(384):ra67. doi: 10.1126/scisignal.aaa6674.
9
Neurons selective to the number of visual items in the corvid songbird endbrain.
Proc Natl Acad Sci U S A. 2015 Jun 23;112(25):7827-32. doi: 10.1073/pnas.1504245112. Epub 2015 Jun 8.
10
Coding principles of the canonical cortical microcircuit in the avian brain.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3517-22. doi: 10.1073/pnas.1408545112. Epub 2015 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验