Suppr超能文献

介孔 ZrO 纳米框架用于生物质升级。

Mesoporous ZrO Nanoframes for Biomass Upgrading.

机构信息

Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University , Xi'an 710049, China.

出版信息

ACS Appl Mater Interfaces. 2017 Aug 16;9(32):26897-26906. doi: 10.1021/acsami.7b07567. Epub 2017 Aug 4.

Abstract

The rational design and preparation of a high-performance catalyst for biomass upgrading are of great significance and remain a great challenge. In this work, mesoporous ZrO nanoframe, hollow ring, sphere, and core-shell nanostructures have been developed through a surfactant-free route for upgrading biomass acids into liquid alkane fuels. The obtained ZrO nanostructures possess well-defined hollow features, high surface areas, and mesopores. The diversity of the resultant ZrO nanostructures should arise from the discrepant hydrolysis of two different ligands in zirconocene dichloride (CpZrCl) as the zirconium precursor. The time-dependent experiments indicate that Ostwald ripening and salt-crystal-template formation mechanisms should account for hollow spheres and nanoframes, respectively. Impressively, compared with the hollow sphere, commercial nanoparticle, and the ever-reported typical results, the ZrO nanoframe-promoted Ni catalyst exhibits greatly enhanced catalytic activity in the upgrading of biomass acids to liquid alkane fuels, which should be ascribed to the hollow feature, large active surface area, highly dispersed Ni, and strong metal-support interactions arising from the structural advantages of nanoframes. The nanoframes also possess excellent solvothermal and thermal stability. Our findings here can be expected to offer new perspectives in material chemistry and ZrO-based catalytic and other applications.

摘要

通过无表面活性剂的方法制备介孔 ZrO 纳米框架、空心环、球体和核壳纳米结构,用于将生物质酸升级为液体烷烃燃料,这对于高性能催化剂的合理设计和制备具有重要意义,但仍然是一个巨大的挑战。所得的 ZrO 纳米结构具有明确的空心特征、高表面积和介孔。不同 ZrO 纳米结构的产生应源于二氯二茂锆(CpZrCl)作为锆前体中两种不同配体的水解差异。时间依赖性实验表明,Ostwald 熟化和盐晶模板形成机制分别应适用于空心球体和纳米框架。令人印象深刻的是,与空心球体、商业纳米颗粒和以往报道的典型结果相比,ZrO 纳米框架促进的 Ni 催化剂在将生物质酸升级为液体烷烃燃料方面表现出大大增强的催化活性,这归因于纳米框架的结构优势带来的空心特征、大的活性表面积、高度分散的 Ni 和强的金属-载体相互作用。纳米框架还具有出色的溶剂热和热稳定性。我们的研究结果有望在材料化学和基于 ZrO 的催化及其他应用领域提供新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验