Pokratath Rohan, Van den Eynden Dietger, Cooper Susan Rudd, Mathiesen Jette Katja, Waser Valérie, Devereux Mike, Billinge Simon J L, Meuwly Markus, Jensen Kirsten M Ø, De Roo Jonathan
Department of Chemistry, University of Basel, Mattenstrasse 24, BPR 1096, Basel 4058, Switzerland.
Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark.
JACS Au. 2022 Mar 9;2(4):827-838. doi: 10.1021/jacsau.1c00568. eCollection 2022 Apr 25.
One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri--octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and S1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals.
如今人们可以很容易地制备出单分散胶体纳米晶体,但由于其背后的化学原理往往还未被充分理解,所以逆向合成分析仍然无法实现。在此,我们深入研究了由金属氯化物和金属异丙醇盐合成的胶体氧化锆和氧化铪纳米晶体的反应机理。我们通过结合核磁共振光谱(NMR)、密度泛函理论(DFT)计算和对分布函数(PDF)分析,确定了反应混合物中的活性前驱体物种。我们深入了解了表面活性剂三辛基氧化膦(TOPO)与不同前驱体之间的相互作用。有趣的是,我们发现了一种特殊的X型配体重新分布机制,该机制可以由路易斯碱(L型)的相对量来控制。我们进一步利用溶液NMR和气相色谱监测反应混合物的分解情况,发现ZrCl是该反应的副产物,这限制了反应产率。该反应通过两种相互竞争的机制进行:E1消除(占主导)和S1取代(次要)。利用这一新的机理认识,我们调整了合成方法以优化产率并控制纳米晶体的尺寸。这些认识将有助于复杂氧化物纳米晶体的合理设计与合成。