Vacher Morgane, Farahani Pooria, Valentini Alessio, Frutos Luis Manuel, Karlsson Hans O, Fdez Galván Ignacio, Lindh Roland
Department of Chemistry - Ångström, The Theoretical Chemistry Programme, Uppsala University , Box 538, 751 21 Uppsala, Sweden.
Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo , C.P. 05508-000, São Paulo, Brazil.
J Phys Chem Lett. 2017 Aug 17;8(16):3790-3794. doi: 10.1021/acs.jpclett.7b01668. Epub 2017 Aug 2.
Chemiluminescence is the emission of light as a result of a nonadiabatic chemical reaction. The present work is concerned with understanding the yield of chemiluminescence, in particular how it dramatically increases upon methylation of 1,2-dioxetane. Both ground-state and nonadiabatic dynamics (including singlet excited states) of the decomposition reaction of various methyl-substituted dioxetanes have been simulated. Methyl-substitution leads to a significant increase in the dissociation time scale. The rotation around the O-C-C-O dihedral angle is slowed; thus, the molecular system stays longer in the "entropic trap" region. A simple kinetic model is proposed to explain how this leads to a higher chemiluminescence yield. These results have important implications for the design of efficient chemiluminescent systems in medical, environmental, and industrial applications.
化学发光是由于非绝热化学反应而产生的光发射。目前的工作致力于理解化学发光的产率,特别是1,2 - 二氧杂环丁烷甲基化后其产率如何显著增加。已经对各种甲基取代的二氧杂环丁烷分解反应的基态和非绝热动力学(包括单重激发态)进行了模拟。甲基取代导致解离时间尺度显著增加。围绕O - C - C - O二面角的旋转减慢;因此,分子系统在“熵阱”区域停留的时间更长。提出了一个简单的动力学模型来解释这如何导致更高的化学发光产率。这些结果对于医学、环境和工业应用中高效化学发光系统的设计具有重要意义。