Wang Guiqin, Sun Tiantian, Xu Jifeng
State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
University of Chinese Academy of Sciences, Beijing, 100049, China.
Rapid Commun Mass Spectrom. 2017 Oct 15;31(19):1616-1622. doi: 10.1002/rcm.7943.
According to the Johnson-Nyquist noise equation, the value of electron noise is proportional to the square root of the resistor value. This relationship gives a theoretical improvement of 100 in the signal/noise ratio by going from 10 Ω to 10 Ω amplifiers for Faraday detection in thermal ionization mass spectrometry (TIMS).
We measured Os isotopes using static Faraday cups with 10 Ω amplifiers in negative thermal ionization mass spectrometry (NTIMS) and compared the results with those obtained with 10 Ω amplifiers and by peak-hopping on a single secondary electron multiplier (SEM). We analysed large loads of Os (1 μg) at a range of intensities of OsO (0.02-10 mV) in addition to small loads of Os (5-500 pg) to compare the results of the three methods.
Using 10 Ω amplifiers, the long-term reproducibility determined from Merck Os was Os/ Os = 0.1211 ± 0.0086 and 0.120229 ± 0.000034 at 0.02 mV and 10 mV of OsO intensities. Meanwhile, the analysed JMC Os loadings of 5 and 500 pg showed Os/ Os = 0.10669 ± 0.00036 and 0.106807 ± 0.000023. In comparison, the values measured by the SEM were Os/ Os = 0.10704 ± 0.00056 and 0.10690 ± 0.00013. All errors are in 2 standard deviation (SD).
Both the accuracy and the precision determined using the 10 Ω amplifiers and the SEM are identical when the Os amounts are within 10-50 pg. However, the former analysis time can be shortened by approximately two-thirds. The SEM measurement is still the most precise method for Os amounts <10 pg, but the analyses using 10 Ω amplifiers suggest they are significantly better than the SEM for Os amounts >50 pg.
根据约翰逊 - 奈奎斯特噪声方程,电子噪声的值与电阻值的平方根成正比。对于热电离质谱法(TIMS)中的法拉第检测,从10Ω放大器变为100Ω放大器,这种关系在理论上使信噪比提高了100倍。
我们在负热电离质谱法(NTIMS)中使用配备10Ω放大器的静态法拉第杯测量了锇同位素,并将结果与使用100Ω放大器以及在单个二次电子倍增器(SEM)上进行跳峰扫描所获得的结果进行了比较。除了少量的锇(5 - 500 pg),我们还分析了大量的锇(1μg),在一系列OsO强度(0.02 - 10 mV)下比较这三种方法的结果。
使用10Ω放大器时,在OsO强度为0.02 mV和10 mV时,由默克锇确定的长期重现性为Os/Os = 0.1211 ± 0.0086和0.120229 ± 0.000034。同时,分析的5 pg和500 pg的JMC锇负载量显示Os/Os = 0.10669 ± 0.00036和0.106807 ± 0.000023。相比之下,通过SEM测量的值为Os/Os = 0.10704 ± 0.00056和0.10690 ± 0.00013。所有误差均为2倍标准偏差(SD)。
当锇含量在10 - 50 pg范围内时,使用10Ω放大器和SEM确定的准确度和精密度相同。然而,前者的分析时间可以缩短约三分之二。对于锇含量<10 pg,SEM测量仍然是最精确的方法,但使用10Ω放大器的分析表明,对于锇含量>50 pg,它们明显优于SEM。