Suppr超能文献

评估CB1R受体偏向性信号传导的方法。

Approaches to Assess Biased Signaling at the CB1R Receptor.

作者信息

Laprairie Robert B, Stahl Edward L, Bohn Laura M

机构信息

The Scripps Research Institute, Jupiter, FL, United States.

The Scripps Research Institute, Jupiter, FL, United States.

出版信息

Methods Enzymol. 2017;593:259-279. doi: 10.1016/bs.mie.2017.06.031. Epub 2017 Jul 5.

Abstract

G protein-coupled receptors, such as the cannabinoid type 1 receptor (CB1R), have been shown to interact with multiple binding partners to transmit signals. In both transfected cell systems and in endogenously expressing cell lines, CB1R signaling has been described as multifaceted. The question remains as to how this highly widely expressed receptor signals in a given cell at a given time in vivo. The concept of functional selectivity, or biased agonism, describes the ability of an agonist to engage the receptor in a manner that preferentially engages certain signaling interactions (e.g., G proteins) over others (e.g., β-arrestins), presumably by stabilizing certain receptor conformations. There is growing interest in using such properties of ligands to direct signaling downstream of CB1R toward desirable therapeutic outcomes and to avoid adverse side effects. While it is not currently clear what pathways should be engaged and which should be avoided, the development of biased agonist tool compounds will aid in answering these questions. In this chapter, we discuss the approaches and caveats to assessing biased agonism at the CB1R.

摘要

G蛋白偶联受体,如大麻素1型受体(CB1R),已被证明可与多种结合伴侣相互作用以传递信号。在转染细胞系统和内源性表达细胞系中,CB1R信号传导都被描述为多方面的。问题仍然是,在体内给定时间的特定细胞中,这种广泛表达的受体是如何发出信号的。功能选择性或偏向激动作用的概念描述了激动剂以优先参与某些信号相互作用(如G蛋白)而非其他相互作用(如β-抑制蛋白)的方式与受体结合的能力,这大概是通过稳定某些受体构象实现的。利用配体的这些特性来引导CB1R下游信号传导以实现理想的治疗效果并避免不良副作用,这方面的兴趣日益浓厚。虽然目前尚不清楚应该激活哪些途径以及应该避免哪些途径,但开发偏向激动剂工具化合物将有助于回答这些问题。在本章中,我们将讨论评估CB1R偏向激动作用的方法和注意事项。

相似文献

1
Approaches to Assess Biased Signaling at the CB1R Receptor.
Methods Enzymol. 2017;593:259-279. doi: 10.1016/bs.mie.2017.06.031. Epub 2017 Jul 5.
3
Design and Synthesis of Cannabinoid 1 Receptor (CB1R) Allosteric Modulators: Drug Discovery Applications.
Methods Enzymol. 2017;593:281-315. doi: 10.1016/bs.mie.2017.06.018. Epub 2017 Jul 14.
4
Leveraging allostery to improve G protein-coupled receptor (GPCR)-directed therapeutics: cannabinoid receptor 1 as discovery target.
Expert Opin Drug Discov. 2016 Dec;11(12):1223-1237. doi: 10.1080/17460441.2016.1245289. Epub 2016 Oct 21.
5
Biased Agonism and Biased Allosteric Modulation at the CB1 Cannabinoid Receptor.
Mol Pharmacol. 2015 Aug;88(2):368-79. doi: 10.1124/mol.115.099192. Epub 2015 Jun 4.
6
Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis.
J Biol Chem. 2005 Apr 1;280(13):12212-20. doi: 10.1074/jbc.M411642200. Epub 2005 Jan 18.
7
Modulation of CB1 cannabinoid receptor by allosteric ligands: Pharmacology and therapeutic opportunities.
Neuropharmacology. 2017 Sep 15;124:3-12. doi: 10.1016/j.neuropharm.2017.05.018. Epub 2017 May 17.
8
Mutations in the 'DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants.
J Mol Endocrinol. 2015 Feb;54(1):75-89. doi: 10.1530/JME-14-0219. Epub 2014 Dec 15.
9
Assessing Allosteric Modulation of CB at the Receptor and Cellular Levels.
Methods Enzymol. 2017;593:317-342. doi: 10.1016/bs.mie.2017.05.002. Epub 2017 Jul 5.
10
CB1 Cannabinoid Receptor Signaling and Biased Signaling.
Molecules. 2021 Sep 6;26(17):5413. doi: 10.3390/molecules26175413.

引用本文的文献

1
Structural basis of THC analog activity at the Cannabinoid 1 receptor.
Nat Commun. 2025 Jan 8;16(1):486. doi: 10.1038/s41467-024-55808-4.
2
Structural basis of Δ-THC analog activity at the Cannabinoid 1 receptor.
Res Sq. 2024 May 21:rs.3.rs-4277209. doi: 10.21203/rs.3.rs-4277209/v1.
3
The endocannabinoid system in cardiovascular function: novel insights and clinical implications.
Clin Auton Res. 2018 Feb;28(1):35-52. doi: 10.1007/s10286-017-0488-5. Epub 2017 Dec 8.

本文引用的文献

2
Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor.
ACS Chem Neurosci. 2017 Jun 21;8(6):1188-1203. doi: 10.1021/acschemneuro.6b00310. Epub 2017 Feb 7.
4
High-resolution crystal structure of the human CB1 cannabinoid receptor.
Nature. 2016 Dec 22;540(7634):602-606. doi: 10.1038/nature20613. Epub 2016 Nov 16.
5
Crystal Structure of the Human Cannabinoid Receptor CB.
Cell. 2016 Oct 20;167(3):750-762.e14. doi: 10.1016/j.cell.2016.10.004.
7
Endocannabinoid System in Neurological Disorders.
Recent Pat CNS Drug Discov. 2016;10(2):90-112. doi: 10.2174/1574889810999160719105433.
8
Mechanisms of Biased β-Arrestin-Mediated Signaling Downstream from the Cannabinoid 1 Receptor.
Mol Pharmacol. 2016 Jun;89(6):618-29. doi: 10.1124/mol.115.103176. Epub 2016 Mar 23.
9
The role of kinetic context in apparent biased agonism at GPCRs.
Nat Commun. 2016 Feb 24;7:10842. doi: 10.1038/ncomms10842.
10
Biased agonism: An emerging paradigm in GPCR drug discovery.
Bioorg Med Chem Lett. 2016 Jan 15;26(2):241-250. doi: 10.1016/j.bmcl.2015.12.024. Epub 2015 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验