Department of Agroecology, University of Bayreuth, Bayreuth, Germany.
Department of Soil Science of Temperate Ecosystems, Georg-August-University, Göttingen, Germany.
Glob Chang Biol. 2018 Jan;24(1):1-12. doi: 10.1111/gcb.13850. Epub 2017 Sep 23.
Despite its fundamental role for carbon (C) and nutrient cycling, rhizodeposition remains 'the hidden half of the hidden half': it is highly dynamic and rhizodeposits are rapidly incorporated into microorganisms, soil organic matter, and decomposed to CO . Therefore, rhizodeposition is rarely quantified and remains the most uncertain part of the soil C cycle and of C fluxes in terrestrial ecosystems. This review synthesizes and generalizes the literature on C inputs by rhizodeposition under crops and grasslands (281 data sets). The allocation dynamics of assimilated C (after C-CO or C-CO labeling of plants) were quantified within shoots, shoot respiration, roots, net rhizodeposition (i.e., C remaining in soil for longer periods), root-derived CO , and microorganisms. Partitioning of C pools and fluxes were used to extrapolate belowground C inputs via rhizodeposition to ecosystem level. Allocation from shoots to roots reaches a maximum within the first day after C assimilation. Annual crops retained more C (45% of assimilated C or C) in shoots than grasses (34%), mainly perennials, and allocated 1.5 times less C belowground. For crops, belowground C allocation was maximal during the first 1-2 months of growth and decreased very fast thereafter. For grasses, it peaked after 2-4 months and remained very high within the second year causing much longer allocation periods. Despite higher belowground C allocation by grasses (33%) than crops (21%), its distribution between various belowground pools remains very similar. Hence, the total C allocated belowground depends on the plant species, but its further fate is species independent. This review demonstrates that C partitioning can be used in various approaches, e.g., root sampling, CO flux measurements, to assess rhizodeposits' pools and fluxes at pot, plot, field and ecosystem scale and so, to close the most uncertain gap of the terrestrial C cycle.
尽管根分泌物在碳(C)和养分循环中起着基础性作用,但它仍然是“隐藏的另一半中的另一半”:它具有高度动态性,根分泌物会迅速被微生物、土壤有机质吸收,并分解为 CO 。因此,根分泌物很少被量化,仍然是土壤 C 循环和陆地生态系统 C 通量中最不确定的部分。
本综述综合和概括了关于作物和草原下根分泌物 C 输入的文献(281 个数据集)。同化 C 的分配动态(在植物进行 14 C-CO 或 14 C-CO 标记后)在地上部分、地上部分呼吸、根系、净根分泌物(即土壤中较长时间保留的 C)、根系衍生 CO 和微生物中进行了量化。C 库和通量的分配被用来将通过根分泌物输入的地下 C 推断到生态系统水平。
在同化 C 后的第一天,从地上部分到根系的分配达到最大值。一年生作物比多年生作物(主要是多年生作物)在地上部分保留更多的 C(同化 14 C 的 45%或 14 C),而在地下部分分配的 C 要少 1.5 倍。对于作物,地下 C 分配在生长的前 1-2 个月达到最大值,此后迅速下降。对于草类,它在 2-4 个月后达到峰值,并在第二年保持非常高的水平,导致更长的分配期。尽管草类(33%)比作物(21%)有更高的地下 C 分配,但它在各种地下库之间的分布仍然非常相似。因此,地下分配的总 C 取决于植物物种,但它的进一步命运与物种无关。
本综述表明,C 分配可以用于各种方法,例如根系采样、CO 通量测量,以评估盆、小区、田间和生态系统尺度下的根分泌物库和通量,从而缩小陆地 C 循环中最不确定的缺口。