Suppr超能文献

真菌中的倍性变异:多倍体、非整倍体和基因组进化。

Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution.

机构信息

Creighton University, Department of Medical Microbiology and Immunology, Omaha, NE 68178.

Bowdoin College, Brunswick, ME 04011-8451.

出版信息

Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0051-2016.

Abstract

The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.

摘要

生物体具有高度保真的复制和分离其基因组的能力,这对其生存和产生后代至关重要。这两个步骤(复制或分离)中的任何一个错误都可能导致倍性或染色体数目的改变。虽然这些剧烈的基因组变化可能对生物体有害,导致适应性降低,但它们也可以在压力时期提供更高的适应性。倍性或染色体数目的改变可以从根本上改变细胞感知和响应环境的方式。在这里,我们讨论了真菌生物学中的现有观点,这些观点阐明了真核生物基因组大小变化如何在细胞和进化水平上影响生物体。过去 20 年研究中最引人注目的观察之一是,一些真菌已经进化出能够耐受大的基因组大小变化并产生巨大基因组异质性而无需经历经典减数分裂的能力。

相似文献

1
Ploidy Variation in Fungi: Polyploidy, Aneuploidy, and Genome Evolution.
Microbiol Spectr. 2017 Jul;5(4). doi: 10.1128/microbiolspec.FUNK-0051-2016.
2
Flow Cytometry Analysis of Fungal Ploidy.
Curr Protoc Microbiol. 2018 Aug;50(1):e58. doi: 10.1002/cpmc.58. Epub 2018 Jul 20.
3
Ploidy dynamics and evolvability in fungi.
Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709). doi: 10.1098/rstb.2015.0461.
4
Ploidy variation as an adaptive mechanism in human pathogenic fungi.
Semin Cell Dev Biol. 2013 Apr;24(4):339-46. doi: 10.1016/j.semcdb.2013.01.008. Epub 2013 Feb 4.
5
Rise and persistence of animal polyploidy: evolutionary constraints and potential.
Cytogenet Genome Res. 2013;140(2-4):151-70. doi: 10.1159/000353464. Epub 2013 Jul 5.
6
Seasons of change: Mechanisms of genome evolution in human fungal pathogens.
Infect Genet Evol. 2019 Jun;70:165-174. doi: 10.1016/j.meegid.2019.02.031. Epub 2019 Mar 1.
8
MOS, aneuploidy and the ploidy cycle of cancer cells.
Oncogene. 2010 Oct 7;29(40):5447-51. doi: 10.1038/onc.2010.310. Epub 2010 Aug 2.
9
The Case of the Missing Ancient Fungal Polyploids.
Am Nat. 2016 Dec;188(6):602-614. doi: 10.1086/688763. Epub 2016 Sep 26.
10
The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress.
Annu Rev Microbiol. 2023 Sep 15;77:341-361. doi: 10.1146/annurev-micro-041320-112443. Epub 2023 Jun 12.

引用本文的文献

2
Obtaining new brewing yeasts using regional Chilean wine yeasts through an adaptive evolution program.
Front Microbiol. 2025 Jun 16;16:1599904. doi: 10.3389/fmicb.2025.1599904. eCollection 2025.
3
Comparative genomics and transcriptomics identify AG-7 cytochrome P450 gene for pencycuron resistance.
iScience. 2025 May 26;28(7):112756. doi: 10.1016/j.isci.2025.112756. eCollection 2025 Jul 18.
4
Patterns and mechanisms of fungal genome plasticity.
Curr Biol. 2025 Jun 9;35(11):R527-R544. doi: 10.1016/j.cub.2025.04.003.
5
Identification of quantitative trait loci (QTLs) for key cheese making phenotypes in the blue-cheese mold Penicillium roqueforti.
PLoS Genet. 2025 Apr 15;21(4):e1011669. doi: 10.1371/journal.pgen.1011669. eCollection 2025 Apr.
6
Signaling pathways governing the pathobiological features and antifungal drug resistance of .
mBio. 2025 May 14;16(5):e0247523. doi: 10.1128/mbio.02475-23. Epub 2025 Apr 3.
7
Genome duplication in a long-term multicellularity evolution experiment.
Nature. 2025 Mar;639(8055):691-699. doi: 10.1038/s41586-025-08689-6. Epub 2025 Mar 5.
8
Pyrvinium Pamoate Synergizes with Azoles in vitro and in vivo to Exert Antifungal Efficacy Against and Other Species.
Infect Drug Resist. 2025 Feb 10;18:783-789. doi: 10.2147/IDR.S497929. eCollection 2025.
9
Recent Advances in Antimicrobial Resistance: Insights from as a Model Organism.
Microorganisms. 2024 Dec 31;13(1):51. doi: 10.3390/microorganisms13010051.

本文引用的文献

2
Detection of individual ploidy levels with genotyping-by-sequencing (GBS) analysis.
Mol Ecol Resour. 2017 Nov;17(6):1156-1167. doi: 10.1111/1755-0998.12657. Epub 2017 Mar 9.
3
β-glucan Exposure on the Fungal Cell Wall Tightly Correlates with Competitive Fitness of Species in the Mouse Gastrointestinal Tract.
Front Cell Infect Microbiol. 2016 Dec 22;6:186. doi: 10.3389/fcimb.2016.00186. eCollection 2016.
4
Homology Requirements and Competition between Gene Conversion and Break-Induced Replication during Double-Strand Break Repair.
Mol Cell. 2017 Feb 2;65(3):515-526.e3. doi: 10.1016/j.molcel.2016.12.003. Epub 2017 Jan 5.
5
Experimental Evolution Reveals Interplay between Sch9 and Polyploid Stability in Yeast.
PLoS Genet. 2016 Nov 3;12(11):e1006409. doi: 10.1371/journal.pgen.1006409. eCollection 2016 Nov.
6
High-Throughput Identification of Adaptive Mutations in Experimentally Evolved Yeast Populations.
PLoS Genet. 2016 Oct 11;12(10):e1006339. doi: 10.1371/journal.pgen.1006339. eCollection 2016 Oct.
7
Development of a Comprehensive Genotype-to-Fitness Map of Adaptation-Driving Mutations in Yeast.
Cell. 2016 Sep 8;166(6):1585-1596.e22. doi: 10.1016/j.cell.2016.08.002. Epub 2016 Sep 1.
9
Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici.
Mol Plant Pathol. 2016 Dec;17(9):1455-1466. doi: 10.1111/mpp.12440. Epub 2016 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验