Suppr超能文献

一种基于Q学习的延迟感知路由算法,用于延长水下传感器网络的寿命。

A Q-Learning-Based Delay-Aware Routing Algorithm to Extend the Lifetime of Underwater Sensor Networks.

作者信息

Jin Zhigang, Ma Yingying, Su Yishan, Li Shuo, Fu Xiaomei

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.

出版信息

Sensors (Basel). 2017 Jul 19;17(7):1660. doi: 10.3390/s17071660.

Abstract

Underwater sensor networks (UWSNs) have become a hot research topic because of their various aquatic applications. As the underwater sensor nodes are powered by built-in batteries which are difficult to replace, extending the network lifetime is a most urgent need. Due to the low and variable transmission speed of sound, the design of reliable routing algorithms for UWSNs is challenging. In this paper, we propose a Q-learning based delay-aware routing (QDAR) algorithm to extend the lifetime of underwater sensor networks. In QDAR, a data collection phase is designed to adapt to the dynamic environment. With the application of the Q-learning technique, QDAR can determine a global optimal next hop rather than a greedy one. We define an action-utility function in which residual energy and propagation delay are both considered for adequate routing decisions. Thus, the QDAR algorithm can extend the network lifetime by uniformly distributing the residual energy and provide lower end-to-end delay. The simulation results show that our protocol can yield nearly the same network lifetime, and can reduce the end-to-end delay by 20-25% compared with a classic lifetime-extended routing protocol (QELAR).

摘要

水下传感器网络(UWSNs)因其各种水上应用而成为一个热门研究课题。由于水下传感器节点由难以更换的内置电池供电,延长网络寿命是最迫切的需求。由于声音的传输速度低且变化不定,为水下传感器网络设计可靠的路由算法具有挑战性。在本文中,我们提出了一种基于Q学习的延迟感知路由(QDAR)算法来延长水下传感器网络的寿命。在QDAR中,设计了一个数据收集阶段以适应动态环境。通过应用Q学习技术,QDAR可以确定全局最优的下一跳而不是贪婪的下一跳。我们定义了一个动作效用函数,其中同时考虑了剩余能量和传播延迟以做出适当的路由决策。因此,QDAR算法可以通过均匀分配剩余能量来延长网络寿命,并提供更低的端到端延迟。仿真结果表明,与经典的寿命延长路由协议(QELAR)相比,我们的协议可以产生几乎相同的网络寿命,并且可以将端到端延迟降低20 - 25%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9195/5539619/3c99f3f4145f/sensors-17-01660-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验