Suppr超能文献

基于Q学习的水下无线传感器网络节能深度机会路由

Energy-Efficient Depth-Based Opportunistic Routing with Q-Learning for Underwater Wireless Sensor Networks.

作者信息

Lu Yongjie, He Rongxi, Chen Xiaojing, Lin Bin, Yu Cunqian

机构信息

College of Information Science and Technology, Dalian Maritime University, Dalian 116026, China.

Dalian University of Science and Technology, Dalian 116052, China.

出版信息

Sensors (Basel). 2020 Feb 14;20(4):1025. doi: 10.3390/s20041025.

Abstract

Underwater Wireless Sensor Networks (UWSNs) have aroused increasing interest of many researchers in industry, military, commerce and academe recently. Due to the harsh underwater environment, energy efficiency is a significant theme should be considered for routing in UWSNs. Underwater positioning is also a particularly tricky task since the high attenuation of radio-frequency signals in UWSNs. In this paper, we propose an energy-efficient depth-based opportunistic routing algorithm with Q-learning (EDORQ) for UWSNs to guarantee the energy-saving and reliable data transmission. It combines the respective advantages of Q-learning technique and opportunistic routing (OR) algorithm without the full-dimensional location information to improve the network performance in terms of energy consumption, average network overhead and packet delivery ratio. In EDORQ, the void detection factor, residual energy and depth information of candidate nodes are jointly considered when defining the Q-value function, which contributes to proactively detecting void nodes in advance, meanwhile, reducing energy consumption. In addition, a simple and scalable void node recovery mode is proposed for the selection of candidate set so as to rescue packets that are stuck in void nodes unfortunately. Furthermore, we design a novel method to set the holding time for the schedule of packet forwarding base on Q-value so as to alleviate the packet collision and redundant transmission. We conduct extensive simulations to evaluate the performance of our proposed algorithm and compare it with other three routing algorithms on Aqua-sim platform (NS2). The results show that the proposed algorithm significantly improve the performance in terms of energy efficiency, packet delivery ratio and average network overhead without sacrificing too much average packet delay.

摘要

水下无线传感器网络(UWSNs)近来引起了工业、军事、商业和学术界众多研究人员越来越浓厚的兴趣。由于恶劣的水下环境,能量效率是水下无线传感器网络路由中应考虑的一个重要主题。水下定位也是一项特别棘手的任务,因为射频信号在水下无线传感器网络中衰减严重。在本文中,我们提出了一种基于深度的带Q学习的节能机会路由算法(EDORQ)用于水下无线传感器网络,以保证节能和可靠的数据传输。它结合了Q学习技术和机会路由(OR)算法各自的优点,无需完整的位置信息,从而在能耗、平均网络开销和数据包交付率方面提高网络性能。在EDORQ中,在定义Q值函数时联合考虑候选节点的空洞检测因子、剩余能量和深度信息,这有助于提前主动检测空洞节点,同时降低能耗。此外,针对候选集的选择提出了一种简单且可扩展的空洞节点恢复模式,以便挽救不幸被困在空洞节点中的数据包。此外,我们设计了一种新颖的方法,基于Q值为数据包转发调度设置保持时间,以减轻数据包冲突和冗余传输。我们进行了广泛的仿真,以评估我们提出的算法的性能,并在Aqua-sim平台(NS2)上与其他三种路由算法进行比较。结果表明,所提出的算法在不牺牲太多平均数据包延迟的情况下,在能量效率、数据包交付率和平均网络开销方面显著提高了性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53cf/7070321/a4960b245d4f/sensors-20-01025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验