Rockenfeller R, Günther M
Mathematisches Institut, Universität Koblenz, Universitätsstr. 1, 56070 Koblenz, Germany.
Institut für Sportwissenschaft, Friedrich-Schiller-Universität, Seidelstraße 20, 07749 Jena, Germany; Biomechanics and Biorobotics, Stuttgart Centre for Simulation Sciences (SC SimTech), Universität Stuttgart, Allmandring 28, 70569 Stuttgart, Germany.
J Theor Biol. 2017 Oct 27;431:11-24. doi: 10.1016/j.jtbi.2017.07.023. Epub 2017 Jul 26.
In pharmacology, particularly receptor theory, the drug dose-effect relation of bio-active substances is frequently described by a sigmoidal function formulated by A.V. Hill. In biomechanics and muscle physiology then again, H. Hatze had elaborated a mathematical model for the stimulation- and length-dependent dynamics of the calcium-induced activation of mammalian skeletal muscle. Here, we prove that muscular activity-pCa curves described by the Hill equation and the equilibrium state predicted by Hatze's activation dynamics are equivalent. Thus, the exponent introduced by Hatze can be directly identified with its counterpart in the Hill equation, by which the former model gains further physiological interpretability. Conversely, the Hill constant can now be interpreted as a function of the fibre length, generally allowing for advanced Hill plots based on model ideas. We derive and examine the complementary relation of both model approaches, highlight the benefits of mutually viewing one approach from the perspective of the other, and address the physiology behind sigmoidal curves.
在药理学中,特别是受体理论中,生物活性物质的药物剂量 - 效应关系通常由A.V.希尔提出的S形函数来描述。而在生物力学和肌肉生理学中,H.哈策曾阐述了一个关于哺乳动物骨骼肌钙诱导激活的刺激和长度依赖性动力学的数学模型。在此,我们证明由希尔方程描述的肌肉活动 - pCa曲线与哈策激活动力学预测的平衡状态是等效的。因此,哈策引入的指数可以直接与希尔方程中的对应指数相识别,通过这一点,前一个模型获得了进一步的生理学可解释性。相反,希尔常数现在可以解释为纤维长度的函数,这通常允许基于模型概念绘制更高级的希尔图。我们推导并研究了两种模型方法的互补关系,强调了从另一种方法的角度相互审视一种方法的好处,并探讨了S形曲线背后的生理学原理。