Suppr超能文献

曾几何时,在反复出现神经元网络的土地上……

Once upon a (slow) time in the land of recurrent neuronal networks….

机构信息

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.

出版信息

Curr Opin Neurobiol. 2017 Oct;46:31-38. doi: 10.1016/j.conb.2017.07.003. Epub 2017 Jul 27.

Abstract

The brain must both react quickly to new inputs as well as store a memory of past activity. This requires biology that operates over a vast range of time scales. Fast time scales are determined by the kinetics of synaptic conductances and ionic channels; however, the mechanics of slow time scales are more complicated. In this opinion article we review two distinct network-based mechanisms that impart slow time scales in recurrently coupled neuronal networks. The first is in strongly coupled networks where the time scale of the internally generated fluctuations diverges at the transition between stable and chaotic firing rate activity. The second is in networks with finitely many members where noise-induced transitions between metastable states appear as a slow time scale in the ongoing network firing activity. We discuss these mechanisms with an emphasis on their similarities and differences.

摘要

大脑必须既能快速对新输入做出反应,又能存储过去活动的记忆。这需要在广泛的时间尺度上运作的生物学。快速时间尺度由突触电导和离子通道的动力学决定;然而,慢时间尺度的力学更为复杂。在这篇观点文章中,我们回顾了两种在反复耦合神经元网络中赋予慢时间尺度的独特基于网络的机制。第一种机制存在于强耦合网络中,其中内部产生的波动的时间尺度在稳定和混沌发射率活动之间的转变处发散。第二种机制存在于具有有限数量成员的网络中,其中由噪声引起的亚稳态之间的转变在正在进行的网络发射活动中表现为慢时间尺度。我们讨论了这些机制,重点是它们的相似性和不同之处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验